Texture Optimization in Hydrodynamic Bearings Using Evolutionary Strategies

Authors

  • Santiago Zamateo Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Franco Cragnolino Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Jorge A. Palavecino Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL. Santa Fe, Argentina. & Universidad Nacional de la Patagonia "San Juan Bosco", Facultad de Ingeniería. Comodoro Rivadavia, Argentina.
  • Federico J. Cavalieri Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Santiago Márquez Damián Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/rmc.v2.ocsid8301

Keywords:

Lubrication, Cavitation, Textures, Journal Bearings

Abstract

Surface texturing in a hydrodynamic bearing consists of introducing well-defined and intentional cavities on one of its surfaces. This technique has generated growing interest in recent literature, where an increase in load-carrying capacity has been demonstrated, although no clear consensus exists regarding design criteria and optimal placement. In this work, an automatic optimization of textures in hydrodynamic bearings is presented, as a continuation of a previous study in which the incorporation of textures was explored manually. The study variables considered at this stage correspond to the position and depth of the cavities, aiming to maximize load capacity and minimize friction. The optimizer was developed in Python using evolutionary strategies, and the bearing fluid dynamics are solved through a model formulated with the Finite Area Method and implemented in the OpenFOAM(R) platform.

Published

2025-12-13

Issue

Section

Abstracts in MECOM 2025

Most read articles by the same author(s)

1 2 > >>