From Particles to the Continuum: Mapping DEM Simulations to Eulerian Fields

Authors

  • Juan Cruz Catalano Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina. & Centro de Investigaciones en Métodos Computacionales (CONICET UNL). Santa Fe, Argentina. https://orcid.org/0009-0005-6158-5000
  • César M. Venier Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica & Instituto de Física de Rosario (IFIR - CONICET/UNR). Rosario, Argentina.
  • César I. Pairetti Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica & Instituto de Física de Rosario (IFIR - CONICET/UNR). Rosario, Argentina & Sorbonne Université and CNRS, Institut Jean Le Rond ∂’Alembert. Paris, France.
  • Santiago Márquez Damián Centro de Investigación de Métodos Computacionales (CIMEC - CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8360

Keywords:

Granular media, DEM, Spatial averaging

Abstract

Simulating dense-phase granular media using particles is computationally expensive on an industrial scale. For this reason, continuous models based on rheological laws are used to describe the macroscopic behaviour of the material. To adjust these models, reliable data capturing interactions at the grain level is required. Simulations using the Discrete Element Method (DEM) can provide this information on a laboratory scale, but the results are expressed in terms of particle properties and variables, which must be transformed into continuous fields. This paper presents a code that implements spatial averaging techniques to convert the results of DEM simulations from a Lagrangian perspective into continuous fields defined on an Eulerian mesh. Simple cases are also presented to demonstrate the ability to extract useful information for calibrating and validating these continuous models.

References

Andreotti B., Forterre Y., y Pouliquen O. Granular media: between fluid and solid. Cambridge University Press, 2013. http://doi.org/10.1017/CBO9781139541008.

Bhateja A. y Khakhar D.V. Analysis of granular rheology in a quasi-two-dimensional slow flow by means of discrete element method based simulations. Physics of Fluids, 2020. http://doi.org/10.1063/1.5123714.

Cundall P.A. y Strack O.D. A discrete numerical model for granular assemblies. geotechnique, 1979. http://doi.org/10.1680/geot.1979.29.1.47.

Gerlero G.S. y Kler P.A. foamlib: A modern Python package for working with OpenFOAM. Journal of Open Source Software, 2025. http://doi.org/10.21105/joss.07633.

Glasser B. y Goldhirsch I. Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Physics of Fluids, 2001. http://doi.org/10.1063/1.1338543.

Goldenberg C. y Goldhirsch I. Force chains, microelasticity, and macroelasticity. Physical review letters, 2002. http://doi.org/10.1103/PhysRevLett.89.084302.

Goldhirsch I. Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter, 2010. http://doi.org/10.1007/s10035-010-0181-z.

Gu Y., Ozel A., Kolehmainen J., y Sundaresan S. Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions. Journal of Fluid Mechanics, 2019. http://doi.org/10.1017/jfm.2018.856.

Jenkins J.T. y Savage S.B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. Journal of fluid mechanics, 1983. http://doi.org/10.1017/S0022112083001044.

Jop P., Forterre Y., y Pouliquen O. A constitutive law for dense granular flows. Nature, 2006. http://doi.org/10.1038/nature04801.

Lun C.K., Savage S.B., Jeffrey D., y Chepurniy N. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield. Journal of fluid mechanics, 1984. http://doi.org/10.1017/S0022112084000586.

OpenCFD Ltd./ESI Group. OpenFOAM. 2023. Versión v2312 del OpenFOAM open-source CFD toolbox.

Sullivan B. y Kaszynski A. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 2019. http://doi.org/10.21105/joss.01450.

Tsuji Y., Tanaka T., y Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 1992. http://doi.org/10.1016/0032-5910(92)88030-L.

Venier C., Binda L., Ramajo D., Damián S.M., Ippolito I., y Nigro N. The performance of the µ (i)-rheology model on flat bottom silos discharge. En EPJ Web of Conferences. EDP Sciences, 2021a. http://doi.org/10.1051/epjconf/202124903032.

Venier C.M., Marquez Damian S., Bertone S.E., Puccini G.D., Risso J.M., y Nigro N.M. Discrete and continuum approaches for modeling solids motion inside a rotating drum at different regimes. Applied Sciences, 2021b. http://doi.org/10.3390/app112110090.

Weinhart T., Hartkamp R., Thornton A.R., y Luding S. Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Physics of fluids, 2013. http://doi.org/10.1063/1.4812809.

Weinhart T., Thornton A.R., Luding S., y Bokhove O. From discrete particles to continuum fields near a boundary. Granular Matter, 2012. http://doi.org/10.1007/s10035-012-0317-4.

Published

2025-12-02