Simulación Numérica Mediante VOF-RANS del Flujo a Contra Corriente Limitado (FCCL) del Experimento de COLLIDER
DOI:
https://doi.org/10.70567/mc.v41i18.97Palabras clave:
Flujo a contracorriente limitado (CCFL), Simulación numérica, VOF-RANS, Hot-leg, Modelos de turbulenciaResumen
Este trabajo se centra en la simulación del fenómeno de Limitación de Flujo a Contracorriente (CCFL) en una hot-leg experimental, crucial para la seguridad en plantas nucleares. El CCFL surge cuando el flujo de vapor, debido a las altas temperaturas del núcleo, impide la entrada adecuada de agua de refrigeración, comprometiendo el funcionamiento del reactor. Utilizando el modelo VOF-RANS y el modelo de turbulencia k-omega RNG, ambos implementados en OpenFOAM-v2206, este estudio reproduce los resultados experimentales de Issa, enfocándose en la diferencia de presión en la hot-leg para la primera región de flujo con una velocidad adimensional de líquido Jw*^0,5= 0,105. La simulación permite comparar detalladamente los regímenes de CCFL con los datos experimentales y muestra una mejora significativa en la precisión al incorporar el modelo de turbulencia de densidad variable.
Citas
Dong Z., Bürgler M., Hohermuth B., y Vetsch D. Density-based turbulence damping at largescale interface for reynolds-averaged two-fluid models. Chemical Engineering Science, 247:116975, 2022. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2021.116975
Drew D. Mathematical modeling of two-phase flow. Annual Review of Fluid Mechanics, 15(1):261-291, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001401
Egorov Y., Boucker M., Martin A., Pigny S., Scheuerer M., y Willemsen S. Validation of cfd codes with pts-relevant test cases. 5th Euratom Framework Programme ECORA project, 2004:91-116, 2004.
FanW. y Anglart H. varrhoturbvof: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in openfoam. Computer Physics Communications, 247:106876, 2020. ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2019.106876
Frederix E., Mathur A., Dovizio D., Geurts B., y Komen E. Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333:122-130, 2018. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2018.04.010
FULGOSI M., LAKEHAL D., BANERJEE S., y DE ANGELIS V. Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface. Journal of Fluid Mechanics, 482:319-345, 2003. ISSN 1469-7645. https://doi.org/10.1017/S0022112003004154
Futatsugi T., Yanagi C., Murase M., Hosokawa S., y Tomiyama A. Countercurrent air-water flow in a scale-down model of a pressurizer surge line. Science and Technology of Nuclear Installations, 2012:1-7, 2011. https://doi.org/10.1155/2012/174838
Gada V., Punde P., Tandon M.P., y Vikulov R. Role of turbulence damping at the gas-liquid interface. En Proceedings of the 9th International Conference on Multiphase Flow, Firenze, Italy, páginas 22-27. 2016.
Gada V.H., Tandon M.P., Elias J., Vikulov R., y Lo S. A large scale interface multi-fluid model for simulating multiphase flows. Applied Mathematical Modelling, 44:189-204, 2017. ISSN 0307-904X. https://doi.org/10.1016/j.apm.2017.02.030
Ghiaasiaan S M., Turk R E., y Abdel-Khalik S I. Countercurrent flow limitation in inclined channels with bends. Nuclear Engineering and Design, 152:379-388, 1994. https://doi.org/10.1016/0029-5493(94)90098-1
Hirt C W. y Nichols B D. Volume of fluid (vof) method for the dynamics of free boundaries.Journal of computational physics, 39(1):201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5
Höhne T., Dirk D., y Lucas D. Numerical simulations of counter-current two-phase flow experiments in a pwr hot leg model using an interfacial area density model. International Journal of Heat and Fluid Flow, 32:1047-1056, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2011.05.007
Höhne T. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model. Journal of Computational Multiphase Flows, 2:131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131
Ishii M. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density mode. The Journal of Computational Multiphase Flow, 2(3):131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131
Issa A L. Experimental investigation and cfd validation of two-phase phenomena related to nuclear safety research during loca accidents, ph.d these. Technische Universitat Munchen, Alemania, 2014.
Issa A L. y Murcian A. A review of ccfl phenomenon. Ann Nuclear Energy, 38:1795-1819, 2011. https://doi.org/10.1016/j.anucene.2011.04.021
Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014a. https://doi.org/10.1016/j.nucengdes.2014.08.021
Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014b. https://doi.org/10.1016/j.nucengdes.2014.08.021
Kawaji M., Thompson L A., y Krishnan V S. Countercurrent flooding in vertical to inclined pipes. Exp. Heat Transfer, 4:95-110, 1991. https://doi.org/10.1080/08916159108946408
Kinoshita I., Murase M., y Tomiyama A. Numerical simulation of size effects on countercurrent flow limitation in pwr hot leg models. Science and Technology of Nuclear Installations, 2012. https://doi.org/10.1155/2012/907364
Li X., Sun W., Ding S., Huang T., Ma Z., Zhang L., Zhu L., y Pan L.m. Analysis of relap5 prediction of countercurrent flow limitation in downcomer at upper plenum test facility. Progress in Nuclear Energy, 158:104608, 2023. https://doi.org/10.1016/j.pnucene.2023.104608
Ohnuki A. Experimental study of counter-current two-phase flow in horizontal tube connected to inclined riser. Journal of Nuclear Science And Technology, 23:219-232, 1986. https://doi.org/10.1080/18811248.1986.9734975
Ohnuki A., Adachi A., y Murao Y. Scale effects on countercurrent gas-liquid flow in a horizontal tube connected to an inclined riser. Nuclear Engineering and Design, 107:283-294, 1988. https://doi.org/10.1016/0029-5493(88)90036-2
Porombka P. y Höhne T. Drag and turbulence modelling for free surface flows within the two-fluid euler-euler framework. Chemical Engineering Science, 134:348-359, 2015. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2015.05.029
Potter M., Wiggert D., y Ramadan B. Mechanics of Fluids. Cengage Learning, 2016. ISBN 9781305887695.
Riemke R.A. Countercurrent flow limitation model for relap5/mod3. Nuclear technology, 93(2):166-173, 1991. https://doi.org/10.13182/NT91-A34503
Sarache J.P., Corzo S., Godino D., y Ramajo D. Volume of fluid simulation of air-water cocurrent and counter-current flow with variable density turbulence formulation. Nuclear Engineering and Design, 424:113217, 2024. https://doi.org/10.1016/j.nucengdes.2024.113217
Siddiqui H., Banerjee S., y Ardron K H. Flooding in an elbow between a vertical and a horizontal or near-horizontal pipe, part i: experiments. Int. J. Multiphase Flow, 12:531-541,1986. https://doi.org/10.1016/0301-9322(86)90058-3
Wang H. y Kondo S. a study on the stratified horizontal counter-current two-phase flow. Nuclear Engineering and Design, 121:45-52, 1990. https://doi.org/10.1016/0029-5493(90)90006-J
Yoon H.J., Alyammahi N., Al-Yahia O.S., y Leung R. Validation of relap5 mod3. 3 for 1% reactor pressure vessel top head break loss of coolant accident via the atlas facility. Nuclear Engineering and Design, 400:112054, 2022. https://doi.org/10.1016/j.nucengdes.2022.112054
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.