Numerical Simulation of the Counter-Current Limited Flow (CCLF) from the Collider Experiment Using VOF-RANS

Authors

  • Alirio Johan Sarache Piña Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.
  • Santiago Corzo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.
  • Darío Godino Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Damián E. Ramajo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i18.97

Keywords:

Counter-Current Limited Flow (CCLF), Numerical simulation, VOF-RANS, Hot-leg, Liquidgas interface, Turbulence models

Abstract

This work focuses on the simulation of the Counter-Current Flow Limitation (CCFL) phenomenon in an experimental hot-leg, which is crucial for safety in nuclear power plants. CCFL occurs when the vapor flow, due to high core temperatures, hinders the proper entry of coolant water, compromising reactor operation. Utilizing the VOF-RANS model and the k-omega RNG turbulence model, both implemented in OpenFOAM-v2206, this study reproduces the experimental results of Issa, focusing on the pressure difference in the hot-leg for the first flow region with a liquid dimensionless velocity of Jw*^0.5 W = 0.105. The simulation allows for a detailed comparison of CCFL regimes with experimental data and demonstrates a significant improvement in accuracy by incorporating the variable density turbulence model.

References

Dong Z., Bürgler M., Hohermuth B., y Vetsch D. Density-based turbulence damping at largescale interface for reynolds-averaged two-fluid models. Chemical Engineering Science, 247:116975, 2022. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2021.116975

Drew D. Mathematical modeling of two-phase flow. Annual Review of Fluid Mechanics, 15(1):261-291, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001401

Egorov Y., Boucker M., Martin A., Pigny S., Scheuerer M., y Willemsen S. Validation of cfd codes with pts-relevant test cases. 5th Euratom Framework Programme ECORA project, 2004:91-116, 2004.

FanW. y Anglart H. varrhoturbvof: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in openfoam. Computer Physics Communications, 247:106876, 2020. ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2019.106876

Frederix E., Mathur A., Dovizio D., Geurts B., y Komen E. Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333:122-130, 2018. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2018.04.010

FULGOSI M., LAKEHAL D., BANERJEE S., y DE ANGELIS V. Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface. Journal of Fluid Mechanics, 482:319-345, 2003. ISSN 1469-7645. https://doi.org/10.1017/S0022112003004154

Futatsugi T., Yanagi C., Murase M., Hosokawa S., y Tomiyama A. Countercurrent air-water flow in a scale-down model of a pressurizer surge line. Science and Technology of Nuclear Installations, 2012:1-7, 2011. https://doi.org/10.1155/2012/174838

Gada V., Punde P., Tandon M.P., y Vikulov R. Role of turbulence damping at the gas-liquid interface. En Proceedings of the 9th International Conference on Multiphase Flow, Firenze, Italy, páginas 22-27. 2016.

Gada V.H., Tandon M.P., Elias J., Vikulov R., y Lo S. A large scale interface multi-fluid model for simulating multiphase flows. Applied Mathematical Modelling, 44:189-204, 2017. ISSN 0307-904X. https://doi.org/10.1016/j.apm.2017.02.030

Ghiaasiaan S M., Turk R E., y Abdel-Khalik S I. Countercurrent flow limitation in inclined channels with bends. Nuclear Engineering and Design, 152:379-388, 1994. https://doi.org/10.1016/0029-5493(94)90098-1

Hirt C W. y Nichols B D. Volume of fluid (vof) method for the dynamics of free boundaries.Journal of computational physics, 39(1):201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5

Höhne T., Dirk D., y Lucas D. Numerical simulations of counter-current two-phase flow experiments in a pwr hot leg model using an interfacial area density model. International Journal of Heat and Fluid Flow, 32:1047-1056, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2011.05.007

Höhne T. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model. Journal of Computational Multiphase Flows, 2:131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131

Ishii M. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density mode. The Journal of Computational Multiphase Flow, 2(3):131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131

Issa A L. Experimental investigation and cfd validation of two-phase phenomena related to nuclear safety research during loca accidents, ph.d these. Technische Universitat Munchen, Alemania, 2014.

Issa A L. y Murcian A. A review of ccfl phenomenon. Ann Nuclear Energy, 38:1795-1819, 2011. https://doi.org/10.1016/j.anucene.2011.04.021

Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014a. https://doi.org/10.1016/j.nucengdes.2014.08.021

Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014b. https://doi.org/10.1016/j.nucengdes.2014.08.021

Kawaji M., Thompson L A., y Krishnan V S. Countercurrent flooding in vertical to inclined pipes. Exp. Heat Transfer, 4:95-110, 1991. https://doi.org/10.1080/08916159108946408

Kinoshita I., Murase M., y Tomiyama A. Numerical simulation of size effects on countercurrent flow limitation in pwr hot leg models. Science and Technology of Nuclear Installations, 2012. https://doi.org/10.1155/2012/907364

Li X., Sun W., Ding S., Huang T., Ma Z., Zhang L., Zhu L., y Pan L.m. Analysis of relap5 prediction of countercurrent flow limitation in downcomer at upper plenum test facility. Progress in Nuclear Energy, 158:104608, 2023. https://doi.org/10.1016/j.pnucene.2023.104608

Ohnuki A. Experimental study of counter-current two-phase flow in horizontal tube connected to inclined riser. Journal of Nuclear Science And Technology, 23:219-232, 1986. https://doi.org/10.1080/18811248.1986.9734975

Ohnuki A., Adachi A., y Murao Y. Scale effects on countercurrent gas-liquid flow in a horizontal tube connected to an inclined riser. Nuclear Engineering and Design, 107:283-294, 1988. https://doi.org/10.1016/0029-5493(88)90036-2

Porombka P. y Höhne T. Drag and turbulence modelling for free surface flows within the two-fluid euler-euler framework. Chemical Engineering Science, 134:348-359, 2015. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2015.05.029

Potter M., Wiggert D., y Ramadan B. Mechanics of Fluids. Cengage Learning, 2016. ISBN 9781305887695.

Riemke R.A. Countercurrent flow limitation model for relap5/mod3. Nuclear technology, 93(2):166-173, 1991. https://doi.org/10.13182/NT91-A34503

Sarache J.P., Corzo S., Godino D., y Ramajo D. Volume of fluid simulation of air-water cocurrent and counter-current flow with variable density turbulence formulation. Nuclear Engineering and Design, 424:113217, 2024. https://doi.org/10.1016/j.nucengdes.2024.113217

Siddiqui H., Banerjee S., y Ardron K H. Flooding in an elbow between a vertical and a horizontal or near-horizontal pipe, part i: experiments. Int. J. Multiphase Flow, 12:531-541,1986. https://doi.org/10.1016/0301-9322(86)90058-3

Wang H. y Kondo S. a study on the stratified horizontal counter-current two-phase flow. Nuclear Engineering and Design, 121:45-52, 1990. https://doi.org/10.1016/0029-5493(90)90006-J

Yoon H.J., Alyammahi N., Al-Yahia O.S., y Leung R. Validation of relap5 mod3. 3 for 1% reactor pressure vessel top head break loss of coolant accident via the atlas facility. Nuclear Engineering and Design, 400:112054, 2022. https://doi.org/10.1016/j.nucengdes.2022.112054

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024