Simulación Numérica Mediante VOF-RANS del Flujo a Contra Corriente Limitado (FCCL) del Experimento de COLLIDER

Autores

  • Alirio Johan Sarache Piña Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.
  • Santiago Corzo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.
  • Darío Godino Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Damián E. Ramajo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET) & Universidad Nacional del Litoral. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i18.97

Palavras-chave:

Flujo a contracorriente limitado (CCFL), Simulación numérica, VOF-RANS, Hot-leg, Modelos de turbulencia

Resumo

Este trabajo se centra en la simulación del fenómeno de Limitación de Flujo a Contracorriente (CCFL) en una hot-leg experimental, crucial para la seguridad en plantas nucleares. El CCFL surge cuando el flujo de vapor, debido a las altas temperaturas del núcleo, impide la entrada adecuada de agua de refrigeración, comprometiendo el funcionamiento del reactor. Utilizando el modelo VOF-RANS y el modelo de turbulencia k-omega RNG, ambos implementados en OpenFOAM-v2206, este estudio reproduce los resultados experimentales de Issa, enfocándose en la diferencia de presión en la hot-leg para la primera región de flujo con una velocidad adimensional de líquido Jw*^0,5= 0,105. La simulación permite comparar detalladamente los regímenes de CCFL con los datos experimentales y muestra una mejora significativa en la precisión al incorporar el modelo de turbulencia de densidad variable.

Referências

Dong Z., Bürgler M., Hohermuth B., y Vetsch D. Density-based turbulence damping at largescale interface for reynolds-averaged two-fluid models. Chemical Engineering Science, 247:116975, 2022. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2021.116975

Drew D. Mathematical modeling of two-phase flow. Annual Review of Fluid Mechanics, 15(1):261-291, 1983. https://doi.org/10.1146/annurev.fl.15.010183.001401

Egorov Y., Boucker M., Martin A., Pigny S., Scheuerer M., y Willemsen S. Validation of cfd codes with pts-relevant test cases. 5th Euratom Framework Programme ECORA project, 2004:91-116, 2004.

FanW. y Anglart H. varrhoturbvof: A new set of volume of fluid solvers for turbulent isothermal multiphase flows in openfoam. Computer Physics Communications, 247:106876, 2020. ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2019.106876

Frederix E., Mathur A., Dovizio D., Geurts B., y Komen E. Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333:122-130, 2018. ISSN 0029-5493. https://doi.org/10.1016/j.nucengdes.2018.04.010

FULGOSI M., LAKEHAL D., BANERJEE S., y DE ANGELIS V. Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface. Journal of Fluid Mechanics, 482:319-345, 2003. ISSN 1469-7645. https://doi.org/10.1017/S0022112003004154

Futatsugi T., Yanagi C., Murase M., Hosokawa S., y Tomiyama A. Countercurrent air-water flow in a scale-down model of a pressurizer surge line. Science and Technology of Nuclear Installations, 2012:1-7, 2011. https://doi.org/10.1155/2012/174838

Gada V., Punde P., Tandon M.P., y Vikulov R. Role of turbulence damping at the gas-liquid interface. En Proceedings of the 9th International Conference on Multiphase Flow, Firenze, Italy, páginas 22-27. 2016.

Gada V.H., Tandon M.P., Elias J., Vikulov R., y Lo S. A large scale interface multi-fluid model for simulating multiphase flows. Applied Mathematical Modelling, 44:189-204, 2017. ISSN 0307-904X. https://doi.org/10.1016/j.apm.2017.02.030

Ghiaasiaan S M., Turk R E., y Abdel-Khalik S I. Countercurrent flow limitation in inclined channels with bends. Nuclear Engineering and Design, 152:379-388, 1994. https://doi.org/10.1016/0029-5493(94)90098-1

Hirt C W. y Nichols B D. Volume of fluid (vof) method for the dynamics of free boundaries.Journal of computational physics, 39(1):201-225, 1981. https://doi.org/10.1016/0021-9991(81)90145-5

Höhne T., Dirk D., y Lucas D. Numerical simulations of counter-current two-phase flow experiments in a pwr hot leg model using an interfacial area density model. International Journal of Heat and Fluid Flow, 32:1047-1056, 2011. https://doi.org/10.1016/j.ijheatfluidflow.2011.05.007

Höhne T. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model. Journal of Computational Multiphase Flows, 2:131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131

Ishii M. y Vallée C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density mode. The Journal of Computational Multiphase Flow, 2(3):131-143, 2010. https://doi.org/10.1260/1757-482X.2.3.131

Issa A L. Experimental investigation and cfd validation of two-phase phenomena related to nuclear safety research during loca accidents, ph.d these. Technische Universitat Munchen, Alemania, 2014.

Issa A L. y Murcian A. A review of ccfl phenomenon. Ann Nuclear Energy, 38:1795-1819, 2011. https://doi.org/10.1016/j.anucene.2011.04.021

Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014a. https://doi.org/10.1016/j.nucengdes.2014.08.021

Issa A L. y Murcian A. Experimental investigation of countercurrent flow limitation (ccfl) in a large-diameter hot-leg pipe geometry: A detailed description of ccfl mechanisms, flow patterns and high-quality hsc imaging of the interfacial structure in a 1/3.9 scale of pwr geometry. Nuclear Engineering and Design, 280:550-563, 2014b. https://doi.org/10.1016/j.nucengdes.2014.08.021

Kawaji M., Thompson L A., y Krishnan V S. Countercurrent flooding in vertical to inclined pipes. Exp. Heat Transfer, 4:95-110, 1991. https://doi.org/10.1080/08916159108946408

Kinoshita I., Murase M., y Tomiyama A. Numerical simulation of size effects on countercurrent flow limitation in pwr hot leg models. Science and Technology of Nuclear Installations, 2012. https://doi.org/10.1155/2012/907364

Li X., Sun W., Ding S., Huang T., Ma Z., Zhang L., Zhu L., y Pan L.m. Analysis of relap5 prediction of countercurrent flow limitation in downcomer at upper plenum test facility. Progress in Nuclear Energy, 158:104608, 2023. https://doi.org/10.1016/j.pnucene.2023.104608

Ohnuki A. Experimental study of counter-current two-phase flow in horizontal tube connected to inclined riser. Journal of Nuclear Science And Technology, 23:219-232, 1986. https://doi.org/10.1080/18811248.1986.9734975

Ohnuki A., Adachi A., y Murao Y. Scale effects on countercurrent gas-liquid flow in a horizontal tube connected to an inclined riser. Nuclear Engineering and Design, 107:283-294, 1988. https://doi.org/10.1016/0029-5493(88)90036-2

Porombka P. y Höhne T. Drag and turbulence modelling for free surface flows within the two-fluid euler-euler framework. Chemical Engineering Science, 134:348-359, 2015. ISSN 0009-2509. https://doi.org/10.1016/j.ces.2015.05.029

Potter M., Wiggert D., y Ramadan B. Mechanics of Fluids. Cengage Learning, 2016. ISBN 9781305887695.

Riemke R.A. Countercurrent flow limitation model for relap5/mod3. Nuclear technology, 93(2):166-173, 1991. https://doi.org/10.13182/NT91-A34503

Sarache J.P., Corzo S., Godino D., y Ramajo D. Volume of fluid simulation of air-water cocurrent and counter-current flow with variable density turbulence formulation. Nuclear Engineering and Design, 424:113217, 2024. https://doi.org/10.1016/j.nucengdes.2024.113217

Siddiqui H., Banerjee S., y Ardron K H. Flooding in an elbow between a vertical and a horizontal or near-horizontal pipe, part i: experiments. Int. J. Multiphase Flow, 12:531-541,1986. https://doi.org/10.1016/0301-9322(86)90058-3

Wang H. y Kondo S. a study on the stratified horizontal counter-current two-phase flow. Nuclear Engineering and Design, 121:45-52, 1990. https://doi.org/10.1016/0029-5493(90)90006-J

Yoon H.J., Alyammahi N., Al-Yahia O.S., y Leung R. Validation of relap5 mod3. 3 for 1% reactor pressure vessel top head break loss of coolant accident via the atlas facility. Nuclear Engineering and Design, 400:112054, 2022. https://doi.org/10.1016/j.nucengdes.2022.112054

Publicado

2024-11-08

Edição

Seção

Artigos completos da conferência MECOM 2024