VOF Model of a Bi-Swirl Injector for a Rocket Engine

Authors

  • Axel Schubert Instituto Tecnológico de Buenos Aires, Departmento de Ambiente y Movilidad. Ciudad Autónoma de Buenos Aires, Argentina.
  • Pedro García Delucis Instituto Tecnológico de Buenos Aires, Departmento de Ambiente y Movilidad. Ciudad Autónoma de Buenos Aires, Argentina.
  • Lucas S. Liba Instituto Tecnológico de Buenos Aires, Departmento de Ambiente y Movilidad. Ciudad Autónoma de Buenos Aires, Argentina.
  • Agustín Beceyro LIA Aerospace. Durham, Reino Unido.
  • Dan Etenberg LIA Aerospace. Durham, Reino Unido.
  • Patricio H. Pedreira Instituto Tecnológico de Buenos Aires, Departmento de Ambiente y Movilidad. Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i20.108

Keywords:

Computational Fluid Dynamics (CFD), biswirl injectors, aerospace propulsion, volumeof- fluid (VOF), numerical simulation, injector design

Abstract

The injection of liquid propellants into the combustion chamber of rocket engines presents several challenges, among which the correct atomization and mixing of the oxidizer and fuel stand out. Bi-swirl injectors are an attractive option for this application due to their excellent atomization capability. Atomization is achieved through the injector’s centrifugal design, which produces two concentric conical sheets. These sheets decrease in thickness, leading to the propagation of instabilities and subsequent atomization. However, predicting the discharge angle of the conical sheets is difficult, especially with hypergolic propellants. This work presents the CFD modeling of a bi-swirl injector using the Volume of Fluid (VOF) method implemented in the OpenFOAM suite. The model’s results were compared with experimental data obtained from an injector test bench. Adjusting the turbulence damping, required by the interfacial model, was necessary to improve discharge angle predictions.

References

Amini G. Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79:225-235, 2016. https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.004

Bazarov V., Hinckel J., y Villa Nova H. Cfd analysis of swirl atomizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference amp;amp;amp; Exhibit, 2008. https://doi.org/10.2514/6.2008-5229

Benjamin M., Mansour A., Samant U., Jha S., Liao Y., Harris T., y Jeng S. Film thickness, droplet size measurements and correlations for large pressure-swirl atomizers, volumen 78644. American Society of Mechanical Engineers, 1998. https://doi.org/10.1115/98-GT-537

CFD Direct. The pimple algorithm. https://doc.cfd.direct/notes/cfd-general-principles/the-pimple-algorithm, 2024. Accessed: 2024-07-10.

da Silva Couto H., Lacava P.T., Bastos-Netto D., y Pimenta A.P. Experimental evaluation of a low pressure-swirl atomizer applied engineering design procedure. Journal of Propulsion and Power, 25(2):358-364, 2009. https://doi.org/10.2514/1.37018

Damian S.M. Description and utilization of interfoam multiphase solver. International Center for Computational Methods in Engineering, páginas 1-64, 2012.

Frederix E., Mathur A., Dovizio D., Geurts B., y Komen E. Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333:122-130, 2018. https://doi.org/10.1016/j.nucengdes.2018.04.010

Ghorbanian K., Ashjaee M., Soltani M., Mesbahi M., y Morad M. Experimental flow visualization of single swirl spray pattern at various pressure drops. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003. https://doi.org/10.2514/6.2003-4758

Greenshields C. Interface capturing in openfoam. 2021.

Heinrich M. y Schwarze R. 3d-coupling of volume-of-fluid and lagrangian particle tracking for spray atomization simulation in openfoam. SoftwareX, 11:100483, 2020. https://doi.org/10.1016/j.softx.2020.100483

Hutt J.J. A study of design details of rocket engine swirl injection elements. The Pennsylvania State University, 2000.

Jeng S.M., Jog M.A., y Benjamin M.A. Computational and experimental study of liquid sheet emanating from simplex fuel nozzle. AIAA Journal, 36(2):201-207, 1998. https://doi.org/10.2514/2.7502

Jones G.W. L. e. lynnjr and d. de f. whitman, the president as policymaker, temple university press, 1981, xiii and 351 pp., 19,95cloth(9.95 paper). Journal of Public Policy, 2(2):181-182, 1982. https://doi.org/10.1017/S0143814X00005493

Kalitzin G., Medic G., Iaccarino G., y Durbin P. Near-wall behavior of rans turbulence models and implications for wall functions. Journal of Computational Physics, 204(1):265-291, 2005. https://doi.org/10.1016/j.jcp.2004.10.018

Kang Z.,Wang Z.g., Li Q., y Cheng P. Review on pressure swirl injector in liquid rocket engine. Acta Astronautica, 145:174-198, 2018. https://doi.org/10.1016/j.actaastro.2017.12.038

Ketabdari M.J. Free surface flow simulation using vof method. Numerical Simulation - From Brain Imaging to Turbulent Flows, 2016. https://doi.org/10.5772/64161

Kumar G.D. y Agarwal A.G. Design and numerical analysis of double-base swirl injector for ethanol/hydrogen-peroxide based liquid propellant rocket engine. Informe Técnico, SAE Technical Paper, 2024. https://doi.org/10.4271/2023-01-5100

Lee E.J., Oh S.Y., Kim H.Y., James S.C., y Yoon S.S. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various reynolds numbers. Experimental Thermal and Fluid Science, 34(8):1475-1483, 2010. https://doi.org/10.1016/j.expthermflusci.2010.07.010

Li X.Y., Zhang Z.D., Qian H., y Cheng Q. Cfd numerical simulation of internal flow for electronic gasoline injector. Applied Mechanics and Materials, 97:745-751, 2011. https://doi.org/10.4028/www.scientific.net/AMM.97-98.745

Long M., Anderson W., y Humble R. Bicentrifugal swirl injector development for hydrogen peroxide and non-toxic hypergolic miscible fuels. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference amp;amp;amp; Exhibit, 2002. https://doi.org/10.2514/6.2002-4026

Prades L., Fabbri S., Dorado A.D., Gamisans X., Stoodley P., y Picioreanu C. Computational and experimental investigation of biofilm disruption dynamics induced by high-velocity gas jet impingement. mBio, 11(1), 2020. https://doi.org/10.1128/mBio.02813-19

Rashid M.S., Hamid A.H., Sheng O.C., y Ghaffar Z.A. Effect of inlet slot number on the spray cone angle and discharge coefficient of swirl atomizer. Procedia Engineering, 41:1781-1786, 2012. https://doi.org/10.1016/j.proeng.2012.07.383

Rizk N. y Lefebvre A. Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers. International Journal of Turbo and Jet Engines, 4(1-2):65-74, 1987. https://doi.org/10.1515/TJJ.1987.4.1-2.65

Sakman A.T., Jog M.A., Jeng S.M., y Benjamin M.A. Parametric study of simplex fuel nozzle internal flow and performance. AIAA Journal, 38(7):1214-1218, 2000. https://doi.org/10.2514/2.1090

White F.M. y Xue H. Fluid Mechanics. McGraw-Hill Education, 9th edición, 2021. ISBN 9781260258318.

Xue J., Jog M., Jeng S.M., Steinthorsson E., y Benjamin M. Computational model to predict flow in simplex fuel atomizer. página 3710, 2002. https://doi.org/10.2514/6.2002-3710

Xue J., Jog M.A., Jeng S.M., Steinthorsson E., y Benjamin M.A. Effect of geometric parameters on simplex atomizer performance. AIAA Journal, 42(12):2408-2415, 2004. https://doi.org/10.2514/1.2983

Yang L.j., Fu Q., ZhangW., Du M.l., y Tong M.x. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber. Atomization and Sprays, 21(11):949-969, 2011. https://doi.org/10.1615/AtomizSpr.2012004646

Yang L.j., Fu Q.f., Qu Y.y., Zhang W., Du M.l., y Xu B.r. Spray characteristics of gelled propellants in swirl injectors. Fuel, 97:253-261, 2012. https://doi.org/10.1016/j.fuel.2012.02.036

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024