Modelo VOF de un Inyector Bi-swirl de un Motor Cohete
DOI:
https://doi.org/10.70567/mc.v41i20.108Palavras-chave:
Dinámica de Fluidos Computacional (CFD), inyectores biswirl, propulsión aeroespacial, volume-of-fluid (VOF), simulación numérica, diseño de inyectoresResumo
La inyección de propelentes líquidos en la cámara de combustión de motores cohete presenta varios desafíos entre los que se destacan la correcta atomización y la mezcla del oxidante y el combustible. Los inyectores bi-swirl son una opción atractiva para esta aplicación debido a su excelente capacidad de atomización. La atomización se logra gracias al diseño centrífugo del inyector, que produce dos láminas cónicas concéntricas. Estas láminas disminuyen su espesor dando inicio a la propagación de inestabilidades y la posterior atomización. Sin embargo, es difícil predecir el ángulo de descarga del inyector. Esto es particularmente importante con propelentes hipergólicos donde la combustión se inicia en la zona de contacto entre los compuestos y es deseable conocer con exactitud donde esto ocurrirá. Este trabajo presenta el modelado por CFD de un inyector bi-swirl utilizando el método Volume of Fluid (VOF) implementado en la suite OpenFOAM. Los resultados del modelo fueron comparados con experimentos realizados en un banco de ensayos de inyección. El ajuste de la amortiguación de la turbulencia, requerido por el modelo interfacial, fue necesario para mejorar las predicciones del ángulo de descarga. Además, fue posible lograr un buen ajuste con un único valor de amortiguación.
Referências
Amini G. Liquid flow in a simplex swirl nozzle. International Journal of Multiphase Flow, 79:225-235, 2016. https://doi.org/10.1016/j.ijmultiphaseflow.2015.09.004
Bazarov V., Hinckel J., y Villa Nova H. Cfd analysis of swirl atomizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference amp;amp;amp; Exhibit, 2008. https://doi.org/10.2514/6.2008-5229
Benjamin M., Mansour A., Samant U., Jha S., Liao Y., Harris T., y Jeng S. Film thickness, droplet size measurements and correlations for large pressure-swirl atomizers, volumen 78644. American Society of Mechanical Engineers, 1998. https://doi.org/10.1115/98-GT-537
CFD Direct. The pimple algorithm. https://doc.cfd.direct/notes/cfd-general-principles/the-pimple-algorithm, 2024. Accessed: 2024-07-10.
da Silva Couto H., Lacava P.T., Bastos-Netto D., y Pimenta A.P. Experimental evaluation of a low pressure-swirl atomizer applied engineering design procedure. Journal of Propulsion and Power, 25(2):358-364, 2009. https://doi.org/10.2514/1.37018
Damian S.M. Description and utilization of interfoam multiphase solver. International Center for Computational Methods in Engineering, páginas 1-64, 2012.
Frederix E., Mathur A., Dovizio D., Geurts B., y Komen E. Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333:122-130, 2018. https://doi.org/10.1016/j.nucengdes.2018.04.010
Ghorbanian K., Ashjaee M., Soltani M., Mesbahi M., y Morad M. Experimental flow visualization of single swirl spray pattern at various pressure drops. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003. https://doi.org/10.2514/6.2003-4758
Greenshields C. Interface capturing in openfoam. 2021.
Heinrich M. y Schwarze R. 3d-coupling of volume-of-fluid and lagrangian particle tracking for spray atomization simulation in openfoam. SoftwareX, 11:100483, 2020. https://doi.org/10.1016/j.softx.2020.100483
Hutt J.J. A study of design details of rocket engine swirl injection elements. The Pennsylvania State University, 2000.
Jeng S.M., Jog M.A., y Benjamin M.A. Computational and experimental study of liquid sheet emanating from simplex fuel nozzle. AIAA Journal, 36(2):201-207, 1998. https://doi.org/10.2514/2.7502
Jones G.W. L. e. lynnjr and d. de f. whitman, the president as policymaker, temple university press, 1981, xiii and 351 pp., 19,95cloth(9.95 paper). Journal of Public Policy, 2(2):181-182, 1982. https://doi.org/10.1017/S0143814X00005493
Kalitzin G., Medic G., Iaccarino G., y Durbin P. Near-wall behavior of rans turbulence models and implications for wall functions. Journal of Computational Physics, 204(1):265-291, 2005. https://doi.org/10.1016/j.jcp.2004.10.018
Kang Z.,Wang Z.g., Li Q., y Cheng P. Review on pressure swirl injector in liquid rocket engine. Acta Astronautica, 145:174-198, 2018. https://doi.org/10.1016/j.actaastro.2017.12.038
Ketabdari M.J. Free surface flow simulation using vof method. Numerical Simulation - From Brain Imaging to Turbulent Flows, 2016. https://doi.org/10.5772/64161
Kumar G.D. y Agarwal A.G. Design and numerical analysis of double-base swirl injector for ethanol/hydrogen-peroxide based liquid propellant rocket engine. Informe Técnico, SAE Technical Paper, 2024. https://doi.org/10.4271/2023-01-5100
Lee E.J., Oh S.Y., Kim H.Y., James S.C., y Yoon S.S. Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various reynolds numbers. Experimental Thermal and Fluid Science, 34(8):1475-1483, 2010. https://doi.org/10.1016/j.expthermflusci.2010.07.010
Li X.Y., Zhang Z.D., Qian H., y Cheng Q. Cfd numerical simulation of internal flow for electronic gasoline injector. Applied Mechanics and Materials, 97:745-751, 2011. https://doi.org/10.4028/www.scientific.net/AMM.97-98.745
Long M., Anderson W., y Humble R. Bicentrifugal swirl injector development for hydrogen peroxide and non-toxic hypergolic miscible fuels. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference amp;amp;amp; Exhibit, 2002. https://doi.org/10.2514/6.2002-4026
Prades L., Fabbri S., Dorado A.D., Gamisans X., Stoodley P., y Picioreanu C. Computational and experimental investigation of biofilm disruption dynamics induced by high-velocity gas jet impingement. mBio, 11(1), 2020. https://doi.org/10.1128/mBio.02813-19
Rashid M.S., Hamid A.H., Sheng O.C., y Ghaffar Z.A. Effect of inlet slot number on the spray cone angle and discharge coefficient of swirl atomizer. Procedia Engineering, 41:1781-1786, 2012. https://doi.org/10.1016/j.proeng.2012.07.383
Rizk N. y Lefebvre A. Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers. International Journal of Turbo and Jet Engines, 4(1-2):65-74, 1987. https://doi.org/10.1515/TJJ.1987.4.1-2.65
Sakman A.T., Jog M.A., Jeng S.M., y Benjamin M.A. Parametric study of simplex fuel nozzle internal flow and performance. AIAA Journal, 38(7):1214-1218, 2000. https://doi.org/10.2514/2.1090
White F.M. y Xue H. Fluid Mechanics. McGraw-Hill Education, 9th edición, 2021. ISBN 9781260258318.
Xue J., Jog M., Jeng S.M., Steinthorsson E., y Benjamin M. Computational model to predict flow in simplex fuel atomizer. página 3710, 2002. https://doi.org/10.2514/6.2002-3710
Xue J., Jog M.A., Jeng S.M., Steinthorsson E., y Benjamin M.A. Effect of geometric parameters on simplex atomizer performance. AIAA Journal, 42(12):2408-2415, 2004. https://doi.org/10.2514/1.2983
Yang L.j., Fu Q., ZhangW., Du M.l., y Tong M.x. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber. Atomization and Sprays, 21(11):949-969, 2011. https://doi.org/10.1615/AtomizSpr.2012004646
Yang L.j., Fu Q.f., Qu Y.y., Zhang W., Du M.l., y Xu B.r. Spray characteristics of gelled propellants in swirl injectors. Fuel, 97:253-261, 2012. https://doi.org/10.1016/j.fuel.2012.02.036
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Asociación Argentina de Mecánica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.