Dynamics of Straight and Curved Functionally Graded Beams Incorporating Electromechanical Local Resonators: Analysis of Attenuation Bands

Authors

  • Walter H. Fruccio Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Provincia de La Pampa, Argentina
  • Marcelo T. Piován Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, Centro de Investigaciones de Mecánica Teórica y Aplicada. Bahía Blanca, Provincia de Buenos Aires, Argentina
  • Rogelio L. Hecker Universidad Nacional de La Pampa, Facultad de Ingeniería. General Pico, Provincia de La Pampa, Argentina

DOI:

https://doi.org/10.70567/mc.v41i5.25

Keywords:

Graded Materials, Resonators, Metamaterials, Attenuation Bands

Abstract

The study of wave propagation in metamaterials represents a new and emerging field in engineering, especially in composite materials that have some kind of periodicity and possess exceptional properties not commonly found in other types of materials. In this work, a thin-walled beam model is introduced, created by graded ceramic/metallic functional materials with inclusion of local electromechanical resonators. The beam model is based on the incorporation of generalized shear flexibility for bending and torsion with non-uniform warping. A computational model is built using the finite element method from the weak formulation associated with the virtual work principle. The uncertainty of the parameters is studied, using the parametric probabilistic approach.

References

Bathe K.J. Finite Element procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1996.

Di Giorgio L.E. y Piovan M.T. Stochastic aspects in dynamics of curved electromechanic metastructures. En Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling, páginas 111-120. Springer International Publishing, 2021. ISBN 978-3-030-53669-5. https://doi.org/10.1007/978-3-030-53669-5_9

Fazzolari F.A. Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous fg sandwich beams resting on elastic foundations. Composites Part B: Engineering, 136:254-271, 2018. ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2017.10.022.

IEEE. An American National Standard: IEEE Standard on Piezoelectricity Standard. IEEE, 1988.

Karamanli A. Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory. Composite Structures, 189:127-136, 2018. ISSN 0263-8223. https://doi.org/10.1016/j.compstruct.2018.01.060.

Katili I., Syahril T., y Katili A.M. Static and free vibration analysis of fgm beam based on unified and integrated of timoshenko's theory. Composite Structures, 242:112130, 2020. ISSN 0263-8223. https://doi.org/10.1016/j.compstruct.2020.112130

Parham Zahedinejad e.a. A comprehensive review on vibration analysis of functionally graded beams. International Journal of Structural Stability and Dynamics, 4, 2020. https://doi.org/10.1142/S0219455420300025

Piovan M. y Cortínez V. Mechanics of thin-walled curved beams made of composite materials, allowing for shear deformability. Thin Walled Structures, 45:759-789, 2007. https://doi.org/10.1016/j.tws.2007.06.005

Piovan M.T. In-plane and out-of-plane dynamics and buckling offunctionally graded circular curved beams. Composite Structures, 94:3194-3206, 2012. https://doi.org/10.1016/j.compstruct.2012.04.032

Sampaio R. y Cataldo E. Comparing two strategies to model uncertainties in structuraldynamics. Shock and Vibration, 17:171-186, 2010. https://doi.org/10.1155/2010/837362

Sangiuliano L. The use of locally resonant metamaterials to reduce flow-induced noise and vibration. Journal of Sound and Vibration, 535, 2022. https://doi.org/10.1016/j.jsv.2022.117106

Sugino C. On the mechanism of bandgapformation in locally resonant finite elastic metamaterials. Journal of Applied Physics, 120:134-501, 2016. https://doi.org/10.1063/1.4963648

Sugino C., Leadenham S., Ruzzene M., y Erturk A. An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 26(5):055029, 2017. https://doi.org/10.1088/1361-665X/aa6671

Sugino C., Ruzzene M., y Erturk A. Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures. Journal of the Mechanics and Physics of Solids, 116:323-333, 2018. ISSN 0022-5096. https://doi.org/10.1016/j.jmps.2018.04.005

Published

2024-11-08