Analysis of the Numerical Flux Treatment in the Species Equation and Its Impact on Solution Stability in rhoCentralRfFoam

Authors

  • Marcelo J. Frias Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Ingeniería Aeroespacial & Instituto de Estudios Avanzados en Ingeniería y Tecnología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba y CONICET. Córdoba, Argentina.
  • Luis F. Gutiérrez Marcantoni Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina.
  • Sergio Elaskar Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Ingeniería Aeroespacial & Instituto de Estudios Avanzados en Ingeniería y Tecnología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba y CONICET. Córdoba, Argentina.
  • Juan Colman Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Ingeniería Aeroespacial & Instituto de Estudios Avanzados en Ingeniería y Tecnología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba y CONICET. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8449

Keywords:

Chemically Reactive Flows, Species Transport Equations, rhoCentralRfFoam

Abstract

The rhoCentralRfFoam solver, based on rhoCentralFoam (OpenFOAM), is designed to solve the Euler equations for chemically reactive compressible flows with detailed reaction models. Unlike the base solver, it includes the solution of the chemical species transport equations. By employing an explicit central-upwind formulation, the definition of the numerical flux in these equations becomes critical, as it directly influences the stability and accuracy of the solutions. This study analyzes two strategies for its computation: (i) multiplying the volumetric flux by the conserved variable (rhoY), treated as a single quantity, and (ii) multiplying the volumetric flux by the corresponding primitive variables, density (rho) and mass fraction (Y), considered separately. The objective of this work is to evaluate the impact of both formulations on the stability and physical consistency of the solutions, in order to identify the most accurate and stable approach.

References

Frias M., Gutiérrez Marcantoni L., y Elaskar S. Actualización del Solver RhoCentralRFFoam y su Aplicación al Problema de la Ignición por Reflexión en Configuración Fuerte. Mecánica Computacional, 40(25):917–925, 2023.

Greenshields C., Weller H., Gasparini L., y Reese J. Implementation of semi-discrete, nonstaggered central schemes in a colocated, polyhedral, finite volume framework, for highspeed viscous flows. International Journal for Numerical Methods in Fluids, 63(1):1–21, 2010. http://doi.org/10.1002/fld.2033.

Gutiérrez Marcantoni L., Tamagno J., y Elaskar S. rhocentralrffoam: An OpenFOAM solver for high speed chemically active flows – simulation of planar detonations –. Computer PhysicsCommunications, 219:209–222, 2017a. http://doi.org/10.1016/j.cpc.2017.06.008.

Gutiérrez Marcantoni L., Tamagno J., y Elaskar S. Two-dimensional numerical simulations of detonation cellular structures in H2O2-Ar mixtures with Open-FOAM®. International Journal of Hydrogen Energy, 42(41):26102–26113, 2017b. http://doi.org/10.1016/j.ijhydene.2017.08.040.

Gutiérrez Marcantoni L., Tamagno J., y Elaskar S. A numerical study on the impact of chemical modeling on simulating methane-air detonations. Fuel, 240:289–298, 2019. http://doi.org/10.1016/j.fuel.2018.11.118.

Kee R., Coltrin M., Glarborg P., y Zhu H. Chemically Reacting Flow: Theory, Modeling, and Simulation. John Wiley & Sons, Hoboken, NJ, USA, 2017. ISBN 9781119184874. http://doi.org/10.1002/9781119186304.

Kurganov A., Noelle S., y Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM Journal on Scientific Computing, 23(3):707–740, 2001. http://doi.org/10.1137/S1064827500373413.

Oran E., Young T., Boris J., y Cohen A. Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combustion and Flame, 48:135–148, 1982. ISSN 0010-2180.

Shu C. y Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2):439–471, 1988. http://doi.org/10.1016/0021-9991(88)90177-5.

Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, Berlin, Germany, 2013. ISBN 9783642245884. http://doi.org/10.1007/978-3-642-24588-4.

Zhou D., Zhang H., y Yang S. A robust reacting flow solver with computational diagnostics based on OpenFOAM and Cantera. Aerospace, 9(2):102, 2022. http://doi.org/10.3390/aerospace9020102.

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025