Effect of Fiber Distribution and Orientation on the Response of Fiber-Reinforced Concrete
DOI:
https://doi.org/10.70567/mc.v42.ocsid8227Keywords:
Fiber reinforced concrete, fibers pull-out, composite model, fiber orientation and distributionAbstract
The increase in residual strength and crack control by the addition of steel fibres to concrete is due to the slip of the fibres that sew the cracks, and depends largely on the type, content, distribution, and orientation of the fibres in the concrete volume. The last two factors, in turn, depend on the first two and additionally, on the size and shape of the mould filling, the flowability of the matrix, and other factors, and are difficult to predict. The aim of this work is to numerically evaluate the effect of fibre distribution and orientation on the flexure response in order to analyse the validity of the simplifications usually made in the analysis. A meso model is used for steel fiber reinforced concrete. The model takes into account the direction and reorientation of the fibres in the direction of the crack opening.
References
Alshahrani, A., Kulasegaram, S., y Kundu, A. Utilisation of simulation-driven fibre orientation for effective modelling of flexural strength and toughness in self-compacting concrete. Constr Build Mater, 359 (139767), 2025. https://doi.org/10.1016/j.conbuildmat.2024.139767
Barros, J. A., y Foster, S. J., Fibres as shear reinforcement in RC beams: an overview on assessment of material properties and design approaches. ACI, 2018. https://doi.org/10.35789/fib.BULL.0095
Diaz Fontdevila, A., Isla, F., Luccioni, B., Torrijos, C., Giaccio, G., Hours, F., y Vivas, C. Comportamiento a impacto de Hormigones Reforzados con Fibras previamente expuesto a altas temperaturas. Mec Comput, Vol XXXXI:527-536, 2024. https://doi.org/10.70567/mc.v41i10
EN 14651. Precast concrete products-test method for metallic fibre concrete – measuring the flexural tensile strength. European Standard, 2005.
Faustmann, S., Kronau, M. y Fischer, O., Direct tensile test on steel fiber reinforced concrete with focus on wall effect and fiber orientation. Mater Struct, 57:185, 2024. https://doi.org/10.1617/s11527-024-02463-2
Huang, H., Gao, X., y Teng, L., Fiber alignment and its effect on mechanical properties ofUHPC: An overview. Constr Build Mater, 296: 123741, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123741
Isla, F., Argañaraz, P. y Luccioni, B., Numerical modelling of steel fibers pull-out from cementitious matrixes. Constr Build Mater, 332: 127373, 2022 (a) https://doi.org/10.1016/j.conbuildmat.2022.127373
Isla, F., Luccioni, B. y Diaz Fontdevila, A., Modelación de elementos de hormigón reforzado con fibras bajo solicitaciones de corte. Mec Comput, Vol XXXIX:717-726, 2022(b)
Islam, M., Zhang, Q. y Jin, Q., A review of existing codes and standards on design factors for UHPC placement and fiber orientation. Constr Build Mater, 345: 128308, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128308
Kang, S. T., y Kim, J. K., Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution. Constr Build Mater, 28(1): 57-65, 2012. https://doi.org/10.1016/j.conbuildmat.2011.07.003
Luccioni, B., Ruano, G., Isla, F., Zerbino, R. y Giaccio, G., A simple approach to model SFRC. Constr Build Mater, 37:111-24, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.027
Luccioni, B. y Rougier, V., A plastic damage approach for confined concrete. Comput Struct, 83:2238-56, 2005. https://doi.org/10.1016/j.compstruc.2005.03.014
Luccioni, B. e Isla, F., Simulación de Hormigones de Alta Resistencia Reforzados con Fibras bajo Cargas Cuasiestáticas. Mec Comput, XXXIV 2583-2598, 2016.
Medeghini, F., Guhathakurta, J., Tiberti, G., Simon, S., Plizzari, G. A., y Mark, P., Steered fiber orientation: correlating orientation and residual tensile strength parameters of SFRC. Mater and Struct, 55(10), 251, 2022. https://doi.org/10.1617/s11527-022-02082-9
Medeghini, F., Tiberti, G., Guhathakurta, J., Simon, S., Plizzari, G. A., y Mark, P., Fiber orientation and orientation factors in steel fiber-reinforced concrete beams with hybrid fibers: A critical review. Struct Concr, 26:481-500, 2024. https://doi.org/10.1002/suco.202400461
Oller, S., Oliver, J., Lubliner, J. y Oñate, E., Un modelo constitutivo de daño plástico para materiales friccionales. Parte I: variables fundamentales, funciones de fluencia y potencial. Rev. Int. de Método Numéricos para el Cálculo y Diseño en Ingeniería, 4:397-428, 1988.
Oller, S., Oñate, E., Miquel, J. y Botello, S., A plastic damage constitutive model for composite materials. Int. J. Solids and Structures, 33 (17):2501-18, 1996. https://doi.org/10.1016/0020-7683(95)00161-1
Tao, Z., Qiu, M., Wille, K., Zhu, Y., Pan, R., Li, Z., y Shao, X., Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling. Cem Concr Compos, 155:105828, 2025. https://doi.org/10.1016/j.cemconcomp.2024.105828
Teng, L., Huang, H., Du, J., y Khayat, K. H., Prediction of fiber orientation and flexural performance of UHPC based on suspending mortar rheology and casting method. Cem Concr Compos, 122:104142, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104142
Tarifa, M., Poveda, E., Cunha, V. M., y Barros, J. A., Effect of the displacement rate and inclination angle in steel fiber pullout tests. Int J. Fract., 223(1):109-122, 2020. https://doi.org/10.1007/s10704-019-00398-2
Toledo, M., Nallim, L. y Luccioni, B., A micro-macromechanical approach for composite laminates. M Mater, 885-906, 2008. https://doi.org/10.1016/j.mechmat.2008.05.004
Yu, J., Zhang, B., Chen, W., y Liu, H., Multi-scale analysis on the tensile properties of UHPC considering fiber orientation. Compos Struct, 280:114835, 2022. https://doi.org/10.1016/j.compstruct.2021.114835
Zhang, Y., Zhu, Y., Qu, S., Kumar, A., y Shao, X., Improvement of flexural and tensile strength of layered-casting UHPC with aligned steel fibers. Constr Build Mater, 251:118893, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118893
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

