Effect of Fiber Distribution and Orientation on the Response of Fiber-Reinforced Concrete

Authors

  • Alejandra Diaz Fontdevila Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) & Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología, Instituto de Estructuras “Arturo M. Guzmán”. San Miguel de Tucumán, Argentina.
  • Facundo Isla Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) & Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología, Instituto de Estructuras “Arturo M. Guzmán”. San Miguel de Tucumán, Argentina.
  • Bibiana Luccioni Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) & Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología, Instituto de Estructuras “Arturo M. Guzmán”. San Miguel de Tucumán, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8227

Keywords:

Fiber reinforced concrete, fibers pull-out, composite model, fiber orientation and distribution

Abstract

The increase in residual strength and crack control by the addition of steel fibres to concrete is due to the slip of the fibres that sew the cracks, and depends largely on the type, content, distribution, and orientation of the fibres in the concrete volume. The last two factors, in turn, depend on the first two and additionally, on the size and shape of the mould filling, the flowability of the matrix, and other factors, and are difficult to predict. The aim of this work is to numerically evaluate the effect of fibre distribution and orientation on the flexure response in order to analyse the validity of the simplifications usually made in the analysis. A meso model is used for steel fiber reinforced concrete. The model takes into account the direction and reorientation of the fibres in the direction of the crack opening.

References

Alshahrani, A., Kulasegaram, S., y Kundu, A. Utilisation of simulation-driven fibre orientation for effective modelling of flexural strength and toughness in self-compacting concrete. Constr Build Mater, 359 (139767), 2025. https://doi.org/10.1016/j.conbuildmat.2024.139767

Barros, J. A., y Foster, S. J., Fibres as shear reinforcement in RC beams: an overview on assessment of material properties and design approaches. ACI, 2018. https://doi.org/10.35789/fib.BULL.0095

Diaz Fontdevila, A., Isla, F., Luccioni, B., Torrijos, C., Giaccio, G., Hours, F., y Vivas, C. Comportamiento a impacto de Hormigones Reforzados con Fibras previamente expuesto a altas temperaturas. Mec Comput, Vol XXXXI:527-536, 2024. https://doi.org/10.70567/mc.v41i10

EN 14651. Precast concrete products-test method for metallic fibre concrete – measuring the flexural tensile strength. European Standard, 2005.

Faustmann, S., Kronau, M. y Fischer, O., Direct tensile test on steel fiber reinforced concrete with focus on wall effect and fiber orientation. Mater Struct, 57:185, 2024. https://doi.org/10.1617/s11527-024-02463-2

Huang, H., Gao, X., y Teng, L., Fiber alignment and its effect on mechanical properties ofUHPC: An overview. Constr Build Mater, 296: 123741, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123741

Isla, F., Argañaraz, P. y Luccioni, B., Numerical modelling of steel fibers pull-out from cementitious matrixes. Constr Build Mater, 332: 127373, 2022 (a) https://doi.org/10.1016/j.conbuildmat.2022.127373

Isla, F., Luccioni, B. y Diaz Fontdevila, A., Modelación de elementos de hormigón reforzado con fibras bajo solicitaciones de corte. Mec Comput, Vol XXXIX:717-726, 2022(b)

Islam, M., Zhang, Q. y Jin, Q., A review of existing codes and standards on design factors for UHPC placement and fiber orientation. Constr Build Mater, 345: 128308, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128308

Kang, S. T., y Kim, J. K., Investigation on the flexural behavior of UHPCC considering the effect of fiber orientation distribution. Constr Build Mater, 28(1): 57-65, 2012. https://doi.org/10.1016/j.conbuildmat.2011.07.003

Luccioni, B., Ruano, G., Isla, F., Zerbino, R. y Giaccio, G., A simple approach to model SFRC. Constr Build Mater, 37:111-24, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.027

Luccioni, B. y Rougier, V., A plastic damage approach for confined concrete. Comput Struct, 83:2238-56, 2005. https://doi.org/10.1016/j.compstruc.2005.03.014

Luccioni, B. e Isla, F., Simulación de Hormigones de Alta Resistencia Reforzados con Fibras bajo Cargas Cuasiestáticas. Mec Comput, XXXIV 2583-2598, 2016.

Medeghini, F., Guhathakurta, J., Tiberti, G., Simon, S., Plizzari, G. A., y Mark, P., Steered fiber orientation: correlating orientation and residual tensile strength parameters of SFRC. Mater and Struct, 55(10), 251, 2022. https://doi.org/10.1617/s11527-022-02082-9

Medeghini, F., Tiberti, G., Guhathakurta, J., Simon, S., Plizzari, G. A., y Mark, P., Fiber orientation and orientation factors in steel fiber-reinforced concrete beams with hybrid fibers: A critical review. Struct Concr, 26:481-500, 2024. https://doi.org/10.1002/suco.202400461

Oller, S., Oliver, J., Lubliner, J. y Oñate, E., Un modelo constitutivo de daño plástico para materiales friccionales. Parte I: variables fundamentales, funciones de fluencia y potencial. Rev. Int. de Método Numéricos para el Cálculo y Diseño en Ingeniería, 4:397-428, 1988.

Oller, S., Oñate, E., Miquel, J. y Botello, S., A plastic damage constitutive model for composite materials. Int. J. Solids and Structures, 33 (17):2501-18, 1996. https://doi.org/10.1016/0020-7683(95)00161-1

Tao, Z., Qiu, M., Wille, K., Zhu, Y., Pan, R., Li, Z., y Shao, X., Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling. Cem Concr Compos, 155:105828, 2025. https://doi.org/10.1016/j.cemconcomp.2024.105828

Teng, L., Huang, H., Du, J., y Khayat, K. H., Prediction of fiber orientation and flexural performance of UHPC based on suspending mortar rheology and casting method. Cem Concr Compos, 122:104142, 2021. https://doi.org/10.1016/j.cemconcomp.2021.104142

Tarifa, M., Poveda, E., Cunha, V. M., y Barros, J. A., Effect of the displacement rate and inclination angle in steel fiber pullout tests. Int J. Fract., 223(1):109-122, 2020. https://doi.org/10.1007/s10704-019-00398-2

Toledo, M., Nallim, L. y Luccioni, B., A micro-macromechanical approach for composite laminates. M Mater, 885-906, 2008. https://doi.org/10.1016/j.mechmat.2008.05.004

Yu, J., Zhang, B., Chen, W., y Liu, H., Multi-scale analysis on the tensile properties of UHPC considering fiber orientation. Compos Struct, 280:114835, 2022. https://doi.org/10.1016/j.compstruct.2021.114835

Zhang, Y., Zhu, Y., Qu, S., Kumar, A., y Shao, X., Improvement of flexural and tensile strength of layered-casting UHPC with aligned steel fibers. Constr Build Mater, 251:118893, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118893

Published

2025-12-03

Issue

Section

Conference Papers in MECOM 2025