Modification of the K−omega SST Model to Obtain the Turbulent Kinetic Energy Profile: Flat Plate Flow

Authors

  • Franco L. Cortes Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Santiago Márquez Damián Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i6.33

Keywords:

Flat Plate, Viscous Corrections, Turbulent Kinetic Energy Profile

Abstract

The present work addresses the formulation of the k-omega SST turbulence model, incorporating the viscous corrections proposed by Wilcox (Wilcox D.C , Turbulence Modeling for CFD, (1998)). The main purpose is to improve the approximation of the turbulent kinetic energy profile near solid boundaries while maintaining the independence of the specific dissipation rate from the free-stream value. As a result, the equations for turbulent kinetic energy and specific dissipation obtained resemble the k - ! SST model, including variable coefficients as a function of the relationship between turbulent and viscous effects. This integration allows the incorporation of the viscous correction closure functions into the F1 and F2 functions, thereby contributing to a more accurate representation of turbulent behavior near solid surfaces.

References

Chien K. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA Journal, 20(1):33-38, 1982. https://doi.org/10.2514/3.51043

Cortes F. y Damián M. Evaluación de modelos turbulentos para la obtención del perfil energía cinética turbulenta. Flujo en placa plana. Mecánica Computacional, 40(10):413-422, 2023.

Jones W. y Launder B. The prediction of laminarization with a two-equation model of turbulence. International Journal of heat and mass transfer, 15(2):301-314, 1972. https://doi.org/10.1016/0017-9310(72)90076-2

Lam C. y Bremhorst K. A modified form of the k- model for predicting wall turbulence. Journal of Fluids Engineering, 103(3):456-460, 1981. https://doi.org/10.1115/1.3240815

Launder B. y Sharma B. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in heat and mass transfer, 1(2):131-137,1974. https://doi.org/10.1016/0094-4548(74)90150-7

Menter F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598-1605, 1994. https://doi.org/10.2514/3.12149

Menter F., Langtry R., y Völker S. Transition modelling for general purpose cfd codes. Flow, turbulence and combustion, 77:277-303, 2006. https://doi.org/10.1007/s10494-006-9047-1

Moser R., Kim J., y Mansour N. Direct Numerical Simulation of turbulent channel flow up to reτ= 590. Physics of fluids, 11(4):943-945, 1999. https://doi.org/10.1063/1.869966

Spalding D. et al. A single formula for the law of the wall. Journal of Applied Mechanics, 28(3):455-458, 1961. https://doi.org/10.1115/1.3641728

Wilcox D. Turbulence modeling for cfd. DCW industries, La Canada, 1998.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024