Study of Transitional Flows in Thick Airfoils
DOI:
https://doi.org/10.70567/mc.v41i7.35Keywords:
Low Reynolds Number Flow, Thick airfoil, Boundary layer, OpenFOAM(R)Abstract
The growing interest of the aerospace industry in unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) is driving research in the field of low Reynolds number flows. These same working ranges are observable in renewable energy sources such as wind turbines and hydraulic turbines. In this context, numerical simulation using CFD is a crucial tool that allows us to study the physical behavior of aerodynamic airfoils, predict vortex structures, and recirculations caused by the fluid/structure interaction that characterizes these phenomena. This work aims to reproduce experimental and numerical tests carried out on a Risø B1-18 and NACA 0024 airfoil, thick aerodynamic airfoils commonly used in this area. Using the OpenFOAM(R) tool and paying due attention to turbulence modeling in low Re regimes, the aforementioned airfoils were analyzed with the objective of predicting characteristic values (Cd and Cl), pressure distribution and boundary layer separation point.
References
Blonski D. y Strzelecka K.and Kudela H. Vortex Trapping Cavity on Airfoil: High-Order Penalized Vortex Method Numerical Simulation and Water Tunnel Experimental Investigation. Energies, 14(24), 2021. ISSN 1996-1073. https://doi.org/10.3390/en14248402
Catalano P. y Tognaccini R. Influence of Free-Stream Turbulence on Simulations of Laminar Separation Bubbles. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, página 1471, 2009. https://doi.org/10.2514/6.2009-1471
Catalano P. y Tognaccini R. Turbulence Modeling for Low-Reynolds-Number Flows. Journal of American Institute of Aeronautics and Astronautics, 48, 2010. https://doi.org/10.2514/1.J050067
Cortes F.L. y Márquez Damián S. Evaluación de Modelos Turbulentos para la Obtención del Perfil Energía Cinética Turbulenta. Flujo en Placa Plana. Mecánica Computacional, 40(10):413-422, 2023.
Drela M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. https://doi.org/10.1007/978-3-642-84010-4_1
Gete Z. y Evans R.L. An Experimental Investigation of Unsteady Turbulent-Wake/Boundary-Layer Interaction. Journal of fluids and structures, 17(1):43-55, 2003. https://doi.org/10.1016/S0889-9746(02)00098-1
Kotapati R.B., Mittal R., Marxen O., Ham F., You D., y Cattafesta L.N. Nonlinear Dynamics and Synthetic-Jet-Based Control of a Canonical Separated Flow. Journal of Fluid Mechanics, 654:65-97, 2010. https://doi.org/10.1017/S002211201000042X
Morgado J., Vizinho R., Silvestre M., y Páscoa J. XFOIL vs CFD Performance Predictions for High Lift Low Reynolds Number Airfoils. Aerospace Science and Technology, 52:207-214, 2016. https://doi.org/10.1016/j.ast.2016.02.031
Mueller T.J. y DeLaurier J.D. Aerodynamics of Small Vehicles. Annual Review of Fluid Mechanics, 35:89-111, 2003. https://doi.org/10.1146/annurev.fluid.35.101101.161102
Márquez Damián S. y Nigro N.M. Comparison of Single Phase Laminar and Large Eddy Simulation (LES) solvers using the OpenFOAM suite. Mecánica Computacional, 29(37):3721-3740, 2010.
Shome B. y Radle M. Assessment of Transitional Model for Prediction of Aerodynamic Performance of Airfoils at Low Reynolds Number Flow Regime. Informe Técnico, SAE Technical Paper, 2013. https://doi.org/10.4271/2013-01-2314
Tsuchiya T., Numata D., Suwa T., y Asai K. Influence of Turbulence Intensity on Aerodynamic Characteristics of an NACA 0012 at Low Reynolds Numbers. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013. https://doi.org/10.2514/6.2013-65
Winslow J., Otsuka H., Govindarajan B., y Chopra I. Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers. Journal of Aircraft, 55(3):1050-1061, 2018. https://doi.org/10.2514/1.C034415
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.