Study of Transitional Flows in Thick Airfoils

Authors

  • Tomás Leschiutta Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Miguel G. Coussirat Universidad Tecnológica Nacional, Facultad Regional Mendoza. Mendoza, Argentina.
  • Santiago Márquez Damián Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i7.35

Keywords:

Low Reynolds Number Flow, Thick airfoil, Boundary layer, OpenFOAM(R)

Abstract

The growing interest of the aerospace industry in unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) is driving research in the field of low Reynolds number flows. These same working ranges are observable in renewable energy sources such as wind turbines and hydraulic turbines. In this context, numerical simulation using CFD is a crucial tool that allows us to study the physical behavior of aerodynamic airfoils, predict vortex structures, and recirculations caused by the fluid/structure interaction that characterizes these phenomena. This work aims to reproduce experimental and numerical tests carried out on a Risø B1-18 and NACA 0024 airfoil, thick aerodynamic airfoils commonly used in this area. Using the OpenFOAM(R) tool and paying due attention to turbulence modeling in low Re regimes, the aforementioned airfoils were analyzed with the objective of predicting characteristic values (Cd and Cl), pressure distribution and boundary layer separation point.

References

Blonski D. y Strzelecka K.and Kudela H. Vortex Trapping Cavity on Airfoil: High-Order Penalized Vortex Method Numerical Simulation and Water Tunnel Experimental Investigation. Energies, 14(24), 2021. ISSN 1996-1073. https://doi.org/10.3390/en14248402

Catalano P. y Tognaccini R. Influence of Free-Stream Turbulence on Simulations of Laminar Separation Bubbles. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, página 1471, 2009. https://doi.org/10.2514/6.2009-1471

Catalano P. y Tognaccini R. Turbulence Modeling for Low-Reynolds-Number Flows. Journal of American Institute of Aeronautics and Astronautics, 48, 2010. https://doi.org/10.2514/1.J050067

Cortes F.L. y Márquez Damián S. Evaluación de Modelos Turbulentos para la Obtención del Perfil Energía Cinética Turbulenta. Flujo en Placa Plana. Mecánica Computacional, 40(10):413-422, 2023.

Drela M. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. https://doi.org/10.1007/978-3-642-84010-4_1

Gete Z. y Evans R.L. An Experimental Investigation of Unsteady Turbulent-Wake/Boundary-Layer Interaction. Journal of fluids and structures, 17(1):43-55, 2003. https://doi.org/10.1016/S0889-9746(02)00098-1

Kotapati R.B., Mittal R., Marxen O., Ham F., You D., y Cattafesta L.N. Nonlinear Dynamics and Synthetic-Jet-Based Control of a Canonical Separated Flow. Journal of Fluid Mechanics, 654:65-97, 2010. https://doi.org/10.1017/S002211201000042X

Morgado J., Vizinho R., Silvestre M., y Páscoa J. XFOIL vs CFD Performance Predictions for High Lift Low Reynolds Number Airfoils. Aerospace Science and Technology, 52:207-214, 2016. https://doi.org/10.1016/j.ast.2016.02.031

Mueller T.J. y DeLaurier J.D. Aerodynamics of Small Vehicles. Annual Review of Fluid Mechanics, 35:89-111, 2003. https://doi.org/10.1146/annurev.fluid.35.101101.161102

Márquez Damián S. y Nigro N.M. Comparison of Single Phase Laminar and Large Eddy Simulation (LES) solvers using the OpenFOAM suite. Mecánica Computacional, 29(37):3721-3740, 2010.

Shome B. y Radle M. Assessment of Transitional Model for Prediction of Aerodynamic Performance of Airfoils at Low Reynolds Number Flow Regime. Informe Técnico, SAE Technical Paper, 2013. https://doi.org/10.4271/2013-01-2314

Tsuchiya T., Numata D., Suwa T., y Asai K. Influence of Turbulence Intensity on Aerodynamic Characteristics of an NACA 0012 at Low Reynolds Numbers. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013. https://doi.org/10.2514/6.2013-65

Winslow J., Otsuka H., Govindarajan B., y Chopra I. Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers. Journal of Aircraft, 55(3):1050-1061, 2018. https://doi.org/10.2514/1.C034415

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024