Sensitivity to Cavitation and Turbulence Parameters in Asymmetric Nozzles Flow Numerical Simulations
DOI:
https://doi.org/10.70567/mc.v41i7.36Palabras clave:
cavitation, turbulence, eddy viscosity models, fuel injector nozzles, computational fluid dynamicsResumen
Cavitating flows are a complex phenomenon involving turbulent flow and phase change, both of which must be considered in its modeling. This study examines the sensitivity of the simulated flow in asymmetric nozzles to the cavitation and turbulence models calibration parameters involved. Building upon previous studies and using the Computational Fluid Dynamics tool Open-FOAM(R), a more detailed investigation was performed based on the k−omega SST turbulence model and the Schnerr-Sauer cavitation models for cases of quite developed cavitation. The results reinforce previous conclusions related to the suitable cavitation and turbulence models calibration on the representation of the cavitated zone.
Citas
Biçer B. Numerical simulation of cavitation phenomena inside fuel injector nozzles. Ph.D. thesis, Kobe University, 2015.
Biçer B. and Sou A. Numerical simulation of turbulent cavitating flow in diesel fuel injector. In Proceedings of the 3rd International Symposium of Maritime Sciences, Kobe, Japan, volume 3, pages 33–38. 2014.
Biçer B., Tanaka A., Fukuda T., and Sou A. Numerical simulation of cavitation phenomena in diesel injector nozzles. In Int. 16th Annual Conf. ILASS-ASIA, pages 58–65. 2013.
Brennen C. Fundamentals of multiphase flow. Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511807169
Brennen C. Cavitation and bubble dynamics. Cambridge University Press, 2014. https://doi.org/10.1017/CBO9781107338760
Cortes F. and Damián M. Evaluación de modelos turbulentos para la obtención del perfil energía cinética turbulenta. Flujo en placa plana. In Mecánica Computacional Vol XXXIX, pages 413- 422. 2023.
Coussirat M. and Moll F. Recalibration of eddy viscosity models for numerical simulation of cavitating flow patterns in low pressure nozzle injectors. Journal of Fluids Engineering, 143(3):031503, 2021. https://doi.org/10.1115/1.4049044
Coussirat M., Moll F., Cappa F., and Fontanals A. Study of available turbulence and cavitation models to reproduce flow patterns in confined flows. Journal of Fluids Engineering,138(9):091304, 2016. https://doi.org/10.1115/1.4033372
Coussirat M., Moll F., and Leschiutta T. Scale adaptive simulations applied to fully cavitating turbulent flow in injector nozzles. Mecánica Computacional, 39(11):397-406, 2022.
Coutier-Delgosha O., Reboud J., and Delannoy Y. Numerical simulation of the unsteady behaviour of cavitating flows. International journal for numerical methods in fluids, 42(5):527- 548, 2003. https://doi.org/10.1002/fld.530
Escaler X., Egusquiza E., Farhat M., Avellan F., and Coussirat M. Detection of cavitation in hydraulic turbines. Mechanical systems and signal processing, 20(4):983-1007, 2006. https://doi.org/10.1016/j.ymssp.2004.08.006
He J., An Q., Jin J., Feng S., and Zhang K. Experimental study and simulation of cavitation shedding in diesel engine nozzle using proper orthogonal decomposition and large eddy simulation.
Journal of Thermal Science, 32(4):1487-1500, 2023. https://doi.org/10.1007/s11630-023-1817-8
Knapp R., Daily J., and Hammit F. Cavitation. McGraw-Hill, 1970.
Korkut E. and Atlar M. On the importance of the effect of turbulence in cavitation inception tests of marine propellers. Proceedings of the Royal Society of London. Series A: Mathematical,Physical and Engineering Sciences, 458(2017):29-48, 2002. https://doi.org/10.1098/rspa.2001.0852
Kunz R.F., Boger D.A., Stinebring D., Chyczewski T., Lindau J., Gibeling H., Venkateswaran S., and Govindan T. A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29(8):849-875, 2000. https://doi.org/10.1016/S0045-7930(99)00039-0
Márquez Damián S. and Nigro N. An extended mixture model for the simultaneous treatment of small-scale and large-scale interfaces. International Journal for Numerical Methods inFluids, 75(8):547-574, 2014. https://doi.org/10.1002/fld.3906
Menter F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8):1598-1605, 1994. https://doi.org/10.2514/3.12149
Merkle C., Feng J., and Buelow P. Computational modeling of the dynamics of sheet cavitation. In Proceedings Third International Symposium on Cavitation. Grenoble, France, 1998.
Mitroglou N., Stamboliyski V., Karathanassis I., Nikas K., and Gavaises M. Cloud cavitation vortex shedding inside an injector nozzle. Experimental Thermal and Fluid Science, 84:179- 189, 2017. https://doi.org/10.1016/j.expthermflusci.2017.02.011
Pope S. Turbulent flows. Cambridge University Press, 2000. https://doi.org/10.1017/CBO9780511840531
Rodriguez S. Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Nature, 2019. https://doi.org/10.1007/978-3-030-28691-0
Saito Y., Takami R., Nakamori I., and Ikohagi T. Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil. Computational Mechanics, 40:85-96, 2007. https://doi.org/10.1007/s00466-006-0086-1
Savio A., Cianferra M., and Armenio V. Analysis of performance of cavitation models with analytically calculated coefficients. Energies, 14(19):6425, 2021. https://doi.org/10.3390/en14196425
Schnerr G. and Sauer J. Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multiphase flow, volume 1, pages 1-12. ICMF New Orleans New Orleans, LO, USA, 2001.
Shi J. and Arafin M. Cfd investigation of fuel property effect on cavitating flow in generic nozzle geometries. ILASS-Europe 2010, 2010.
Singhal A., Athavale M., Li H., and Jiang Y. Mathematical basis and validation of the full cavitation model. J. Fluids Eng., 124(3):617-624, 2002. https://doi.org/10.1115/1.1486223
Sou A., Biçer B., and Tomiyama A. Numerical simulation of incipient cavitation flow in a nozzle of fuel injector. Computers & Fluids, 103:42-48, 2014. https://doi.org/10.1016/j.compfluid.2014.07.011
Stanley C., Barber T., and Rosengarten G. Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice. International Journal of Heat and Fluid Flow, 50:169-176, 2014. https://doi.org/10.1016/j.ijheatfluidflow.2014.07.004
Trummler T., Schmidt S., and Adams N. Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by large-eddy simulation. International Journal ofMultiphase Flow, 125:103215, 2020. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103215
Villafranco D., Do H., Grace S., Ryan E., and Holt R.G. Assessment of cavitation models in the prediction of cavitation in nozzle flow. In Fluids Engineering Division Summer Meeting,volume 51562, page V002T16A003. American Society of Mechanical Engineers, 2018. https://doi.org/10.1115/FEDSM2018-83223
Wang C., Wang G., and Huang B. Characteristics and dynamics of compressible cavitating flows with special emphasis on compressibility effects. International Journal of MultiphaseFlow, 130:103357, 2020. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103357
Wang Z., Zhang M., Kong D., Huang B., Wang G., and Wang C. The influence of ventilated cavitation on vortex shedding behind a bluff body. Experimental Thermal and Fluid Science, 98:181-194, 2018. https://doi.org/10.1016/j.expthermflusci.2018.05.029
Zwart P., Gerber A., and Belamri T. A two-phase flow model for predicting cavitation dynamics. In In Fifth International Conference on Multiphase Flow. Yokohama, Japan" 2004.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.