Heat Diffusion Modeling at the Terminal of a Triac

Authors

  • Gina F. Vezzosi Zoto Universidad Nacional Entre Ríos, Facultad de Ciencias de la Alimentación. Concordia, Argentina. & Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos - ICTAER (CONICET, Universidad Nacional de Entre Ríos). Gualeguaychú, Argentina. https://orcid.org/0000-0001-7195-7158
  • Omar R. Faure Universidad Nacional Entre Ríos, Facultad de Ciencias de la Alimentación. Concordia, Argentina. & Universidad Tecnológica Nacional, Facultad Regional Concepción del Uruguay. Concepción del Uruguay, Argentina. https://orcid.org/0009-0001-3099-0119
  • Patricia C. Gómez Universidad Nacional Entre Ríos, Facultad de Ciencias de la Alimentación. Concordia, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8503

Keywords:

Finite differences, Project-based learning, Applied mathematics

Abstract

The growing demand for technological advancement highlights the increasing importance of a solid foundation in applied mathematics within engineering education. In particular, the teaching of differential equations and numerical methods in the Mechatronics Engineering programme plays a key role, as it provides essential tools for addressing complex problems related to the control of automated systems and the optimization of mechatronic devices. This work presents a project-based teaching and learning approach, in which real-world problems serve as the starting point for introducing and developing the mathematical concepts required for modelling and solving the system. As part of the process, matrix-oriented computing software such as GNU Octave is employed to implement finite difference methods, encouraging the integration of theoretical knowledge with practical applications. The incorporation of numerical techniques and computational tools promotes the development of applied skills, such as real-time model simulation and calibration, thereby strengthening the comprehensive training of engineering students.

References

Behrens M. O paradigma emergente e a prática pedagógica. 2ª ed. Vozes, Petrópolis, 2011.

Crank J., y Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics, 6:207–226, 1996. https://doi.org/10.1007/BF02127704

Dai Z., Yang Y., Chen Z., Wang L., Zhao L., Zhu X., y Xiong J. The role of project-based learning with activity theory in teaching effectiveness: Evidence from the internet of things course. Education and Information Technologies, 2024. https://doi.org/10.1007/s10639-024-12965-9

Furman M. Enseñar distinto: Guía para innovar sin perderse en el camino. Siglo XXI Editores, Buenos Aires, 2021.

LeVeque R. Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007.

Lozada E., Guerrero-Ortiz C., Coronel A., y Medina R. Classroom Methodologies for Teaching and Learning Ordinary Differential Equations: A Systemic Literature Review and Bibliometric Analysis. Mathematics, 9(7):745, 2021. https://doi.org/10.3390/math9070745

Quarteroni A., y Saleri F. Scientific Computing with MATLAB and Octave. Springer Verlag, 2007.

Rezaei J., y Asghary N. Teaching differential equations through a mathematical modelling approach: the impact on problem-solving and the mathematical performance of engineering undergraduates. International Journal of Mathematical Education in Science and Technology, 56(5):899–919, 2024. https://doi.org/10.1080/0020739X.2024.2307397

Published

2025-12-07

Issue

Section

Conference Papers in MECOM 2025