A Comparative Study of Backtracking Strategies for Variational Phase-Field Quasi–Brittle Fracture Models

Authors

  • Mariela Luege Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología, Instituto de Estructuras “Ing. Arturo M. Guzmán” & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Miguel de Tucumán, Argentina.
  • Agustina Campra Universidad Nacional de Tucumán, Facultad de Ciencias Exactas e Ingeniería, Centro de Métodos Numéricos y Computacionales en Ingeniería (CEMNCI) & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Miguel de Tucumán, Argentina.
  • Antonio Orlando Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología, Departamento de Bioingeniería & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). San Miguel de Tucumán, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8332

Keywords:

Variational model of fracture, Gradient–damege model, Energetic bounds, Backtracking

Abstract

This article compares two backtracking strategies designed to improve the quality of numerical solutions of a variational phase-field model for quasi-brittle fracture. The first strategy corresponds to the classical reinitialization method proposed by Bourdin (2007), whose effectiveness has been validated in various scenarios, and which assumes the exclusive application of Dirichlet-type boundary conditions with monotonic variation. The second strategy relaxes this assumption and is based on properties of the global minimizer, expressed in the form of two energy bounds. Based on a benchmark problem, both strategies are compared. Since it is not possible to determine a priori which of them generally provides better results, a hybrid algorithm is proposed that adaptively combines both strategies, aiming to leverage the advantages of each depending on the characteristics of the problem under consideration.

References

Ambrosio L., Fusco N., y Pallara D. Functions of bounded variations and free discontinuity problems. Oxford University Press, 2000. https://doi.org/10.1093/oso/9780198502456.001.0001

Amor H., Marigo J., y Maurini C. Regularized formulation of the variational brittle fracture with unilaterla contact: Numerical experiments. J. Mech. Phys. Solids, 57:1209-1229, 2009. https://doi.org/10.1016/j.jmps.2009.04.011

Bourdin B. Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Boundaries, 9:411-430, 2007. https://doi.org/10.4171/ifb/171

Bourdin B., Francfort G., y Marigo J. The Variational Approach to Fracture. Springer-Verlag, New York, 2008. https://doi.org/10.1007/978-1-4020-6395-4

Francfort G. y Marigo J. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids, 46:1319-1342, 1998. https://doi.org/10.1016/S0022-5096(98)00034-9

Gerasimov T. y De Lorenzis T. On penalization in variational phase-field models of brittle fracture. Comput. Methods Appl. Mech. Eng., 354:990-1026, 2019. https://doi.org/10.1016/j.cma.2019.05.038

Lorentz E. y Godard V. Gradient damage models: Toward full-scale computations. Comput. Methods Appl. Mech. Eng., 200:1927-1944, 2011. https://doi.org/10.1016/j.cma.2010.06.025

Luege M., Campra A., y Orlando A. Numerical simulation of a variational phase-field model for thermoelastic quasi-brittle fracture. 2025. En preparación.

Luege M. y Orlando A. A variational asymmetric phase-field model of quasi-brittle fracture: Energetic solutions and their computation. Int J Solids Struct, 225:110940, 2021. https://doi.org/10.1016/j.ijsolstr.2020.12.005

Miehe C., Hofacker M., y Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng., 199:2765-2778, 2010. https://doi.org/10.1016/j.cma.2010.04.011

Wu J. A unified phase-field theory for the mechanics of damage and quasi-brittle failure in solids. J. Mech. Phys. Solids, 103:20-42, 2017. https://doi.org/10.1016/j.jmps.2018.06.006

Wu J., Nguyen V., Nguyen C., Sutula D., Sinaie S., y Bordas S. Phase-field modeling of fracture. Advances in Applied Mechanics, 53:1–183, 2020. https://doi.org/10.1016/bs.aams.2019.08.001

Published

2025-12-07

Issue

Section

Conference Papers in MECOM 2025