Numerical Analysis of Concrete Fracture Based on the Peridynamic Continuous Approach
DOI:
https://doi.org/10.70567/mc.v41i10.52Keywords:
Peridynamics, discontinuities, quasi-brittle behavior, concreteAbstract
Despite its widespread use in various fields of engineering, Continuum Mechanics has the principal drawback of dealing with discontinuities. On the other hand, an integral approach, such as Peridynamics, allows for the natural emergence and expansion of cracks in the material. In this regard, the quasi-static mechanical response of concrete beams subjected to three-point bending was analyzed. Based on the Cohesive Zone Model, the quasi-brittle behavior of the concrete was described by a bilinear softening curve, with adjusted parameters (tensile strength and fracture energy) according to the geometry of each beam. It was verified that the proposed technique is suitable for analyzing the flexural behavior of concrete, for different cross-sectional dimensions and initial notch sizes.
References
Barbat, G., Cervera, M., Chiumenti, M., y Espinoza, E. Structural size effect: Experimental, theoretical and accurate computational assessment. Engineering Structures, 213:110555, 2020. https://doi.org/10.1016/j.engstruct.2020.110555
Bažant, Z.P. y Planas, J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Routledge, 2019. https://doi.org/10.1201/9780203756799
Chen, F. y Qiao, P. Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action. Materials and Structures, 48(8):2697-2711, 2015. https://doi.org/10.1617/s11527-014-0347-y
Dong, W., Wu, Z., Zhou, X., y Wang, C. A comparative study on two stress intensity factorbased criteria for prediction of mode-i crack propagation in concrete. Engineering Fracture Mechanics, 158:39-58, 2016. https://doi.org/10.1016/j.engfracmech.2016.02.051
Dong, Y., Su, C., y Qiao, P. An improved mesoscale damage model for quasi-brittle fracture analysis of concrete with ordinary state-based peridynamics. Theoretical and Applied Fracture Mechanics, 112:102829, 2021. https://doi.org/10.1016/j.tafmec.2020.102829
Elices, M., Guinea, G.V., y Planas, J. Measurement of the fracture energy using three-point bend tests: Part 3 - Influence of cutting the P-d tail. Materials and Structures, 25(6):327-334, 1992. https://doi.org/10.1007/BF02472591
Gerstle,W.H. Introduction to Practical Peridynamics: Computational Solid Mechanics Without Stress and Strain. World Scientific, 2015. https://doi.org/10.1142/9687
Grégoire, D., Rojas-Solano, L.B., y Pijaudier-Cabot, G. Failure and size effect for notched and unnotched concrete beams. International Journal for Numerical and Analytical Methods in Geomechanics, 37:1434-1452, 2013. https://doi.org/10.1002/nag.2180
Guinea, G.V., Planas, J., y Elices, M. Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures. Materials and Structures, 25(4):212-218, 1992. https://doi.org/10.1007/BF02473065
Hobbs, M., Dodwell, T., Hattori, G., y Orr, J. An examination of the size effect in quasi-brittle materials using a bond-based peridynamic model. Engineering Structures, 262:114207, 2022a. https://doi.org/10.1016/j.engstruct.2022.114207
Hobbs, M., Hattori, G., y Orr, J. Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Computers & Structures, 258:106682, 2022b. https://doi.org/10.1016/j.compstruc.2021.106682
Hobbs, M.C. Three-dimensional peridynamic modelling of quasi-brittle structural elements. 2021.
Littlewood, D.J., Parks, M.L., Foster, J.T., Mitchell, J.A., y Diehl, P. The Peridigm Meshfree Peridynamics Code. Journal of Peridynamics and Nonlocal Modeling, 6:118-148, 2024. https://doi.org/10.1007/s42102-023-00100-0
Madenci, E. y Oterkus, E. Peridynamic Theory and Its Applications. Springer New York, 2014. https://doi.org/10.1007/978-1-4614-8465-3
Mehrmashhadi, J., Chen, Z., Zhao, J., y Bobaru, F. A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Composites Science and Technology, 182:107770, 2019. https://doi.org/10.1016/j.compscitech.2019.107770
Planas, J., Elices, M., y Guinea, G.V. Measurement of the fracture energy using three-point bend tests: Part 2 - Influence of bulk energy dissipation. Materials and Structures, 25(5):305-312, 1992. https://doi.org/10.1007/BF02472671
RILEM/TCS,. Determination of the fracture energy of mortar and concrete by means of threepoint bend tests on notched beams. Materials and Structures, 18(106):285-290, 1985. https://doi.org/10.1007/BF02472918
Silling, S. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175-209, 2000. https://doi.org/10.1016/S0022-5096(99)00029-0
Silling, S.A. y Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005. https://doi.org/10.1016/j.compstruc.2004.11.026
Tong, Y., Shen, W., Shao, J., y Chen, J. A new bond model in peridynamics theory for progressive failure in cohesive brittle materials. Engineering Fracture Mechanics, 223:106767, 2020. https://doi.org/10.1016/j.engfracmech.2019.106767
Wu, L. y Huang, D. Peridynamic modeling and simulations on concrete dynamic failure and penetration subjected to impact loadings. Engineering Fracture Mechanics, 259:108135, 2022. https://doi.org/10.1016/j.engfracmech.2021.108135
Wu, L., Huang, D., Xu, Y., y Wang, L. A rate-dependent dynamic damage model in peridynamics for concrete under impact loading. International Journal of Damage Mechanics, 29(7):1035-1058, 2020. https://doi.org/10.1177/1056789519901162
Xu, P., Ma, J., Zhang, M., Ding, Y., y Meng, L. Fracture energy analysis of concrete considering the boundary effect of single-edge notched beams. Advances in Civil Engineering, 2018:1-10, 2018. https://doi.org/10.1155/2018/3067236
Yaghoobi, A., Chorzepa, M., Kim, S., y A., S. Mesoscale fracture analysis of multiphase cementitious composites using peridynamics. Materials, 10(2):162, 2017. https://doi.org/10.3390/ma10020162
Yang, D., Dong, W., Liu, X., Yi, S., y He, X. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Engineering Fracture Mechanics, 199:567-581, 2018. https://doi.org/10.1016/j.engfracmech.2018.06.019
Yang, D., He, X., Liu, X., Deng, Y., y Huang, X. A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. International Journal of Mechanical Sciences, 184, 2020. https://doi.org/10.1016/j.ijmecsci.2020.105830
Zaccariotto, M., Luongo, F., Sarego, G., y Galvanetto, U. Examples of applications of the peridynamic theory to the solution of static equilibrium problems. The Aeronautical Journal, 119(1216):677-700, 2015. https://doi.org/10.1017/S0001924000010770
Zhang, Y. y Qiao, P. A fully-discrete peridynamic modeling approach for tensile fracture of fiber-reinforced cementitious composites. Engineering Fracture Mechanics, 242:107454, 2021. https://doi.org/10.1016/j.engfracmech.2020.107454
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.