Análisis Numérico de la Fractura del Hormigón con Base en el Enfoque Peridinámico del Continuo

Autores/as

  • Paulo R. Dutra Universidad Nacional de Cuyo, Facultad de Ingeniería, Área de Dinámica Experimental & CONICET. Centro Universitario, Mendoza, Argentina.
  • Fernanda de Borbón Universidad Nacional de Cuyo, Facultad de Ingeniería, Área de Dinámica Experimental & CONICET. Centro Universitario, Mendoza, Argentina.
  • Carlos J. Ruestes Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Instituto Interdisciplinario de Ciencias Básicas & CONICET. Mendoza, Argentina. & Instituto Madrileño de Estudios Avanzados (Materiales). Getafe, Madrid, España.

DOI:

https://doi.org/10.70567/mc.v41i10.52

Palabras clave:

Peridinámica, discontinuidades, comportamiento cuasifrágil, hormigón

Resumen

A pesar de su amplia utilización en diferentes campos de la ingeniería, la Mecánica del Continuo presenta como principal inconveniente el tratamiento de discontinuidades. Por otra parte, un enfoque integral, como la peridinámica, permite el surgimiento y desarrollo natural de fisuras en el material. En este sentido, se analizó la respuesta mecánica cuasiestática de vigas de hormigón sometidas a flexión en tres puntos. Con base en el Modelo de Zona Cohesiva, se describió el comportamiento cuasifrágil del hormigón mediante una curva con ablandamiento bilineal, con parámetros ajustados (módulo de elasticidad, resistencia a tracción y energía de fractura) según la geometría de cada viga. Se verificó que la técnica propuesta es adecuada para el análisis del comportamiento flexional de hormigón, para distintas dimensiones de sección transversal y entalla inicial.

Citas

Barbat, G., Cervera, M., Chiumenti, M., y Espinoza, E. Structural size effect: Experimental, theoretical and accurate computational assessment. Engineering Structures, 213:110555, 2020. https://doi.org/10.1016/j.engstruct.2020.110555

Bažant, Z.P. y Planas, J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Routledge, 2019. https://doi.org/10.1201/9780203756799

Chen, F. y Qiao, P. Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action. Materials and Structures, 48(8):2697-2711, 2015. https://doi.org/10.1617/s11527-014-0347-y

Dong, W., Wu, Z., Zhou, X., y Wang, C. A comparative study on two stress intensity factorbased criteria for prediction of mode-i crack propagation in concrete. Engineering Fracture Mechanics, 158:39-58, 2016. https://doi.org/10.1016/j.engfracmech.2016.02.051

Dong, Y., Su, C., y Qiao, P. An improved mesoscale damage model for quasi-brittle fracture analysis of concrete with ordinary state-based peridynamics. Theoretical and Applied Fracture Mechanics, 112:102829, 2021. https://doi.org/10.1016/j.tafmec.2020.102829

Elices, M., Guinea, G.V., y Planas, J. Measurement of the fracture energy using three-point bend tests: Part 3 - Influence of cutting the P-d tail. Materials and Structures, 25(6):327-334, 1992. https://doi.org/10.1007/BF02472591

Gerstle,W.H. Introduction to Practical Peridynamics: Computational Solid Mechanics Without Stress and Strain. World Scientific, 2015. https://doi.org/10.1142/9687

Grégoire, D., Rojas-Solano, L.B., y Pijaudier-Cabot, G. Failure and size effect for notched and unnotched concrete beams. International Journal for Numerical and Analytical Methods in Geomechanics, 37:1434-1452, 2013. https://doi.org/10.1002/nag.2180

Guinea, G.V., Planas, J., y Elices, M. Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures. Materials and Structures, 25(4):212-218, 1992. https://doi.org/10.1007/BF02473065

Hobbs, M., Dodwell, T., Hattori, G., y Orr, J. An examination of the size effect in quasi-brittle materials using a bond-based peridynamic model. Engineering Structures, 262:114207, 2022a. https://doi.org/10.1016/j.engstruct.2022.114207

Hobbs, M., Hattori, G., y Orr, J. Predicting shear failure in reinforced concrete members using a three-dimensional peridynamic framework. Computers & Structures, 258:106682, 2022b. https://doi.org/10.1016/j.compstruc.2021.106682

Hobbs, M.C. Three-dimensional peridynamic modelling of quasi-brittle structural elements. 2021.

Littlewood, D.J., Parks, M.L., Foster, J.T., Mitchell, J.A., y Diehl, P. The Peridigm Meshfree Peridynamics Code. Journal of Peridynamics and Nonlocal Modeling, 6:118-148, 2024. https://doi.org/10.1007/s42102-023-00100-0

Madenci, E. y Oterkus, E. Peridynamic Theory and Its Applications. Springer New York, 2014. https://doi.org/10.1007/978-1-4614-8465-3

Mehrmashhadi, J., Chen, Z., Zhao, J., y Bobaru, F. A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites. Composites Science and Technology, 182:107770, 2019. https://doi.org/10.1016/j.compscitech.2019.107770

Planas, J., Elices, M., y Guinea, G.V. Measurement of the fracture energy using three-point bend tests: Part 2 - Influence of bulk energy dissipation. Materials and Structures, 25(5):305-312, 1992. https://doi.org/10.1007/BF02472671

RILEM/TCS,. Determination of the fracture energy of mortar and concrete by means of threepoint bend tests on notched beams. Materials and Structures, 18(106):285-290, 1985. https://doi.org/10.1007/BF02472918

Silling, S. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175-209, 2000. https://doi.org/10.1016/S0022-5096(99)00029-0

Silling, S.A. y Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005. https://doi.org/10.1016/j.compstruc.2004.11.026

Tong, Y., Shen, W., Shao, J., y Chen, J. A new bond model in peridynamics theory for progressive failure in cohesive brittle materials. Engineering Fracture Mechanics, 223:106767, 2020. https://doi.org/10.1016/j.engfracmech.2019.106767

Wu, L. y Huang, D. Peridynamic modeling and simulations on concrete dynamic failure and penetration subjected to impact loadings. Engineering Fracture Mechanics, 259:108135, 2022. https://doi.org/10.1016/j.engfracmech.2021.108135

Wu, L., Huang, D., Xu, Y., y Wang, L. A rate-dependent dynamic damage model in peridynamics for concrete under impact loading. International Journal of Damage Mechanics, 29(7):1035-1058, 2020. https://doi.org/10.1177/1056789519901162

Xu, P., Ma, J., Zhang, M., Ding, Y., y Meng, L. Fracture energy analysis of concrete considering the boundary effect of single-edge notched beams. Advances in Civil Engineering, 2018:1-10, 2018. https://doi.org/10.1155/2018/3067236

Yaghoobi, A., Chorzepa, M., Kim, S., y A., S. Mesoscale fracture analysis of multiphase cementitious composites using peridynamics. Materials, 10(2):162, 2017. https://doi.org/10.3390/ma10020162

Yang, D., Dong, W., Liu, X., Yi, S., y He, X. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Engineering Fracture Mechanics, 199:567-581, 2018. https://doi.org/10.1016/j.engfracmech.2018.06.019

Yang, D., He, X., Liu, X., Deng, Y., y Huang, X. A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. International Journal of Mechanical Sciences, 184, 2020. https://doi.org/10.1016/j.ijmecsci.2020.105830

Zaccariotto, M., Luongo, F., Sarego, G., y Galvanetto, U. Examples of applications of the peridynamic theory to the solution of static equilibrium problems. The Aeronautical Journal, 119(1216):677-700, 2015. https://doi.org/10.1017/S0001924000010770

Zhang, Y. y Qiao, P. A fully-discrete peridynamic modeling approach for tensile fracture of fiber-reinforced cementitious composites. Engineering Fracture Mechanics, 242:107454, 2021. https://doi.org/10.1016/j.engfracmech.2020.107454

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024