Reinforcement of Masonry Construction Exposed to Accidental Explosions

Authors

  • Gabriel Aráoz Instituto de Estructuras, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán. San Miguel de Tucumán, Argentina.
  • Sergio Gutiérrez Instituto de Estructuras, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán. San Miguel de Tucumán, Argentina.
  • Bibiana Luccioni Instituto de Estructuras, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán. San Miguel de Tucumán, Argentina. CONICET & CIMNE-IBER, Barcelona, España.

DOI:

https://doi.org/10.70567/mc.v41i2.6

Keywords:

blast load, masonry, reinforcement, carbon fiber reinforced composites

Abstract

In many cases, retrofit of industrial buildings to be able to withstand accidental actions from explosions originated in the same plants is required. This paper presents the application of different levels of analysis to the verification of a construction with masonry walls made of concrete blocks subjected to accidental explosions and the design of the reinforcement with carbon fiber reinforced polymeric matrix composite materials to withstand the design loads with a certain level of damage, but safeguarding the safety of the people inside the construction. In this first design stage, a simplified dynamic method based on one-degree-of-freedom systems is used. The verification of the design using explicit dynamic simulation of the structure allows the evaluation of the safety margins associated with the simplified dynamic method. The results show that the simplified method leads to safe results and that with a proper design, the proposed type of reinforcement allows reducing the damage to the masonry walls.

References

ACI 440.2R-17. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, 2017.

ACI 530-11 & ACI 530.1-11. Building Code Requirements and Specification for Masonry Structures, 2011.

American Society of Civil Engineer (ASCE). Design of Blast-Resistant Buildings in Petrochemical Facilities, 2010.

ANSYS, AUTODYN Version 18.1 User's Manual, 2022.

Aráoz, G., Gutiérrez, S. y Luccioni, B., Evaluación de una construcción industrial expuesta a explosiones accidentales. Mecánica Computacional, XL, 81-90, 2023.

Badshah, E., Naseer , A., Ashraf, M., Ahmad, T., Response of masonry systems against blast loading. Defence Technology, 17(4): 1326-1337, 2021. https://doi.org/10.1016/j.dt.2020.07.003

Biggs, J.M., Introduction to Structural Dynamics. McGraw-Hill, 1964.

Chiquito, M., López, L.M., Castedo, R., Pérez-Caldentey, A. and Santo, A.P., Behaviour of retrofitted masonry walls subjected to blast loading: Damage assessment. Engineering Structures 201: 109805, 2019. https://doi.org/10.1016/j.engstruct.2019.109805

Ehsani, M. and Peña, C., Blast Loading Retrofit of Unreinforced Masonry Walls With Carbon Fiber Reinforced Polymer (CFRP) Fabrics. Structure Magazine 16-20, 2009.

Ghaderi, M., Maleki, V.A. and Andalibi, K., Retrofitting of Unreinforced Masonry Walls under Blast Loading by FRP and Spray on Polyurea. Science Journal, 36 (4): 462-476, 2015.

Luccioni, B.M, Aráoz, G.F. and Labanda, N.A. Defining Erosion Limit for Concrete. International Journal of Protective Structures, 4(3):315-340, 2013. https://doi.org/10.1260/2041-4196.4.3.315

Maazoun, A., Matthys, S., Belkassem, B., Atoui, O. and Lecompte, D. Experimental study of the bond interaction between CFRP and concrete under blast loading. Composite Structures, 277: 114608, 2021. https://doi.org/10.1016/j.compstruct.2021.114608

Octave Project Developers, GNU OCTAVE Version 6.2.0 Free software, User's Manual, 2021.

Paz, M. and Leigh, W., Structural Dynamics: Theory and Computation. Kluwer Ac. Pub., 2006.

Riedel, W., Kawai, N. and Kondo, K., Numerical assessment for impact strength measurements in concrete materials. International Journal of Impact Engineering, 36(2): 283-293, 2009. https://doi.org/10.1016/j.ijimpeng.2007.12.012

Siddika, A, Al Mamunb, A., Ferdous, W. and Alyousef, R. Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs - A state-of-the art review. Engineering Failure Analysis, 111: 104480, 2020. https://doi.org/10.1016/j.engfailanal.2020.104480

Smith, P.D. and Hetherington, J.G., Blast and ballistic loading of structures. Butterworth-Heinemann Ltd., 1994.

Tan, K.H. and Patoary, M. K. H., Blast Resistance of FRP-Strengthened Masonry Walls. I: Approximate Analysis and Field Explosion Tests. J. Compos. Constr., 13: 422-430, 2009. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(422)

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024