A Simple Micromechanical Approach to the Solution of Configurational Forces for Non-Saturated Porous Media
DOI:
https://doi.org/10.70567/mc.v41i12.61Keywords:
Mori-Tanaka Method, Micromechanics, Porous media, BiotAbstract
The primary objective of this study is to evaluate the configurational forces and the associated free energy within a poroelastic continuum containing voids filled with fluid, utilizing a micromechanics approach for constitutive equations within the framework of Eshelbian mechanics. Biots conservation equations, applied in a diluted scheme for the micromechanical environment, in conjunction with Mori- Tanaka homogenization theory, are employed to solve for the geomaterial. In the mathematical model, pores are treated as Eshelby inhomogeneities within a solid matrix, rendering them mechanically active and facilitating the analysis of configurational forces. By leveraging the concepts of equivalent deformation for a single unloaded pore, the multiple-pore diluted scheme, and Mori-Tanaka homogenization for mechanically interactive preloaded pores, both the energy involved in the process and the resulting configurational forces have been determined, demonstrating the consistency and validity of the proposed framework.
References
Alhasadi M. y Salvatore F. Relation between eshelby stress and eshelby fourth-order tensor within an ellipsoidal inclusion. Acta Mech, 228:1045-1069, 2017. https://doi.org/10.1007/s00707-016-1734-y
Anonis R., Mroginski J., y Sánchez P. Multiscale formulation for saturated porous media preserving the representative volume element size objectivity. Int J Num Meth Eng, 125(3):e7381, 2024. https://doi.org/10.1002/nme.7381
Balluffi R. Introduction to Elasticity Theory for Crystal Defects. Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511998379
Beneyto P., Di Rado H., Mroginski J., y Awruch A. A versatile mathematical approach for environmental geomechanic modeling based on stress state decomposition. Appl Math Modelling, 39(22):6880-6896, 2015. https://doi.org/10.1016/j.apm.2015.02.013
Benveniste Y. A new approach to the application of mori-tanaka's theory in composite materials. Mechanics of Materials, 6(2):147-157, 1987. https://doi.org/10.1016/0167-6636(87)90005-6
Biot M. General theory of three dimensional consolidation. J. Appl. Phys., 12(2):155-164, 1941. https://doi.org/10.1063/1.1712886
Braun M. Configurational forces induced by finite-element discretization. Proceedings of the Estonian Academy of Sciences: Physics, Mathematics, 46(1-2):24-31, 1997.
Chakraborty A. Variational asymptotic micromechanics modeling of heterogeneous porous materials. International Journal of Solids and Structures, 48(1):71-86, 2011. https://doi.org/10.1016/j.ijsolstr.2010.09.008
Coussy O. Poromechanics. John Wiley and Sons, Ltd, 2003. https://doi.org/10.1002/0470092718
Di Rado H., Beneyto P., y Mroginski J. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicines, 8:73-81, 2020. https://doi.org/10.4236/jbm.2020.82006
Di Rado H., Beneyto P., Mroginski J., y Awruch A. Influence of the saturation-suction relationship in the formulation of non-saturated soils consolidation models. Math. Comp. Modelling, 49:1058-1070, 2009. https://doi.org/10.1016/j.mcm.2008.03.019
Dormieux L., Kondo D., y Ulm F.J. Microporomechanics. Wiley, 2006. https://doi.org/10.1002/0470032006
Ehlers W. Foundations of multiphasic and porous materials, páginas 3-86. Springer Berlin Heidelberg, 2002. https://doi.org/10.1007/978-3-662-04999-0_1
Eischen J.W. y Herrmann G. Energy-release rates and related balance laws in linear defects mechanics. Journal of Applied Mechanics, 54(2):388-392, 1987. https://doi.org/10.1115/1.3173024
Epstein M. y Maugin G. The energy-momentum tensor and material uniformity in finite elasticity. Acta Mechanica, 83:127-133, 1990. https://doi.org/10.1007/BF01172974
Eshelby J. The force on an elastic singularity. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244:87-112, 1951. https://doi.org/10.1098/rsta.1951.0016
Eshelby J. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A, 241:376-396, 1957. https://doi.org/10.1098/rspa.1957.0133
Feyel F. y Chaboche J.L. Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183(3):309-330, 2000. https://doi.org/10.1016/S0045-7825(99)00224-8
Gurtin M. Configurational Forces as Basic Concepts of Continuum Physics. Springer New York, NY, 1999.
Hill R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, 11(5):357-375, 1963. https://doi.org/10.1016/0022-5096(63)90036-X
Kröner E. Interrelations between various branches of continuum mechanics. Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, páginas 330-340.Springer Link, Freudenstadt and Stuttgart, Germany, 1967. https://doi.org/10.1007/978-3-662-30257-6_40
Kröner E. y Datta B. Nichtlokale elastostatik: Ableitung aus der gittertheorie. Z. Physik, 196:203-211, 1966. https://doi.org/10.1007/BF01330987
Lewis R. y Schrefler B. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons, 1998.
Li X. y Zienkiewicz O. Multiphase flow in deforming porous media and finite element solutions. Computers & Structures, 45(2):211-227, 1992. https://doi.org/10.1016/0045-7949(92)90405-O
Maugin G. Material inhomogeneities in elasticity. Chapman and Hall/CRC, 1993. https://doi.org/10.1007/978-1-4899-4481-8
Maugin G. Configurational Forces: Thermomechanics, Physics, Mathematics and Numerics. Chapman and Hall/CRC, 2010.
Maugin G. Non-Classical Continuum Mechanics. Advanced Structured Materials. Springer Singapore, 2017. https://doi.org/10.1007/978-981-10-2434-4
Maugin G. y Trimarco C. Pseudo-momentum and material forces in nonlinear elasticity: Variational formulations and application to brittle fracture. Acta Mech., 94:1-28, 1992. https://doi.org/10.1007/BF01177002
Mori T. y Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571-574, 1973. https://doi.org/10.1016/0001-6160(73)90064-3
Mroginski J., Di Rado H., Beneyto P., y Awruch A. A finite element approach for multiphase fluid flow in porous media. Mathematics and Computers in Simulation, 81(1):76-91, 2010. https://doi.org/10.1016/j.matcom.2010.07.001
Mroginski J., Etse G., y Vrech S. A thermodynamical gradient theory for deformation and strain localization of porous media. International Journal of Plasticity, 27:620-634, 2011. https://doi.org/10.1016/j.ijplas.2010.08.010
Mura T. Micromechanics of defects in solids, 2nd revised edition. Martinus Nijhoff Publishers, 1987. https://doi.org/10.1007/978-94-009-3489-4
Noether E. Invariante variations probleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235-257, 1918.
Schrefler B. Computer modelling in environmental geomechanics. Computers & Structures, 79(22):2209-2223, 2001. https://doi.org/10.1016/S0045-7949(01)00076-1
Shen W., Kondo D., Dormieux L., y Shao J. A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. Mechanics of Materials, 59:73-86, 2013. https://doi.org/10.1016/j.mechmat.2012.12.008
Shen W. y Shao J. An incremental micro-macro model for porous geomaterials with double porosity and inclusion. International Journal of Plasticity, 83:37-54, 2016. https://doi.org/10.1016/j.ijplas.2016.04.002
Steinmann P. Geometrical Foundations of Continuum Mechanics - An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer, Berlin, 2015. https://doi.org/10.1007/978-3-662-46460-1
Zaoui A. Continuum micromechanics: survey. J. Eng. Mech., 128(8):808-816, 2002. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808)
Zhu Q.Z., Yuan S.S., y Shao J.F. Microporomechanics of quasi-brittle rocks: Theoretical formulations and analytical simulations. International Journal of Plasticity, 171:103789, 2023. https://doi.org/10.1016/j.ijplas.2023.103789
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.