Un Enfoque Micromecánico Simple para la Solución de Fuerzas Configuracionales y Tensor de Tensiones de Maxwell en Medios Porosos No Saturados
DOI:
https://doi.org/10.70567/mc.v41i12.61Palabras clave:
Mori-Tanaka, Micromecanica, Medios Porosos, Teoría de BiotResumen
El objetivo principal de este estudio es evaluar las fuerzas configuracionales y la energía libre asociada dentro de un continuo poroelástico que contiene vacíos llenos de fluido, utilizando un enfoque de micromecánica para las ecuaciones constitutivas dentro del marco de la mecánica eshelbiana. Las ecuaciones de conservación de Biot, aplicadas en un esquema diluido para el entorno micromecánico, junto con la teoría de homogeneización de Mori-Tanaka, se emplean para resolver el material geológico. En el modelo matemático, los poros se tratan como inhomogeneidades de Eshelby dentro de una matriz sólida, lo que los hace mecánicamente activos y facilita el análisis de las fuerzas configuracionales. Al aprovechar los conceptos de deformación equivalente para un solo poro no cargado, el esquema diluido de múltiples poros y la homogeneización de Mori-Tanaka para poros pre-cargados mecánicamente interactivos, se han determinado tanto la energía involucrada en el proceso como las fuerzas configuracionales resultantes, demostrando la consistencia y validez del marco propuesto.
Citas
Alhasadi M. y Salvatore F. Relation between eshelby stress and eshelby fourth-order tensor within an ellipsoidal inclusion. Acta Mech, 228:1045-1069, 2017. https://doi.org/10.1007/s00707-016-1734-y
Anonis R., Mroginski J., y Sánchez P. Multiscale formulation for saturated porous media preserving the representative volume element size objectivity. Int J Num Meth Eng, 125(3):e7381, 2024. https://doi.org/10.1002/nme.7381
Balluffi R. Introduction to Elasticity Theory for Crystal Defects. Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511998379
Beneyto P., Di Rado H., Mroginski J., y Awruch A. A versatile mathematical approach for environmental geomechanic modeling based on stress state decomposition. Appl Math Modelling, 39(22):6880-6896, 2015. https://doi.org/10.1016/j.apm.2015.02.013
Benveniste Y. A new approach to the application of mori-tanaka's theory in composite materials. Mechanics of Materials, 6(2):147-157, 1987. https://doi.org/10.1016/0167-6636(87)90005-6
Biot M. General theory of three dimensional consolidation. J. Appl. Phys., 12(2):155-164, 1941. https://doi.org/10.1063/1.1712886
Braun M. Configurational forces induced by finite-element discretization. Proceedings of the Estonian Academy of Sciences: Physics, Mathematics, 46(1-2):24-31, 1997.
Chakraborty A. Variational asymptotic micromechanics modeling of heterogeneous porous materials. International Journal of Solids and Structures, 48(1):71-86, 2011. https://doi.org/10.1016/j.ijsolstr.2010.09.008
Coussy O. Poromechanics. John Wiley and Sons, Ltd, 2003. https://doi.org/10.1002/0470092718
Di Rado H., Beneyto P., y Mroginski J. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicines, 8:73-81, 2020. https://doi.org/10.4236/jbm.2020.82006
Di Rado H., Beneyto P., Mroginski J., y Awruch A. Influence of the saturation-suction relationship in the formulation of non-saturated soils consolidation models. Math. Comp. Modelling, 49:1058-1070, 2009. https://doi.org/10.1016/j.mcm.2008.03.019
Dormieux L., Kondo D., y Ulm F.J. Microporomechanics. Wiley, 2006. https://doi.org/10.1002/0470032006
Ehlers W. Foundations of multiphasic and porous materials, páginas 3-86. Springer Berlin Heidelberg, 2002. https://doi.org/10.1007/978-3-662-04999-0_1
Eischen J.W. y Herrmann G. Energy-release rates and related balance laws in linear defects mechanics. Journal of Applied Mechanics, 54(2):388-392, 1987. https://doi.org/10.1115/1.3173024
Epstein M. y Maugin G. The energy-momentum tensor and material uniformity in finite elasticity. Acta Mechanica, 83:127-133, 1990. https://doi.org/10.1007/BF01172974
Eshelby J. The force on an elastic singularity. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244:87-112, 1951. https://doi.org/10.1098/rsta.1951.0016
Eshelby J. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A, 241:376-396, 1957. https://doi.org/10.1098/rspa.1957.0133
Feyel F. y Chaboche J.L. Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183(3):309-330, 2000. https://doi.org/10.1016/S0045-7825(99)00224-8
Gurtin M. Configurational Forces as Basic Concepts of Continuum Physics. Springer New York, NY, 1999.
Hill R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, 11(5):357-375, 1963. https://doi.org/10.1016/0022-5096(63)90036-X
Kröner E. Interrelations between various branches of continuum mechanics. Mechanics of Generalized Continua, Proceedings of the IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, páginas 330-340.Springer Link, Freudenstadt and Stuttgart, Germany, 1967. https://doi.org/10.1007/978-3-662-30257-6_40
Kröner E. y Datta B. Nichtlokale elastostatik: Ableitung aus der gittertheorie. Z. Physik, 196:203-211, 1966. https://doi.org/10.1007/BF01330987
Lewis R. y Schrefler B. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons, 1998.
Li X. y Zienkiewicz O. Multiphase flow in deforming porous media and finite element solutions. Computers & Structures, 45(2):211-227, 1992. https://doi.org/10.1016/0045-7949(92)90405-O
Maugin G. Material inhomogeneities in elasticity. Chapman and Hall/CRC, 1993. https://doi.org/10.1007/978-1-4899-4481-8
Maugin G. Configurational Forces: Thermomechanics, Physics, Mathematics and Numerics. Chapman and Hall/CRC, 2010.
Maugin G. Non-Classical Continuum Mechanics. Advanced Structured Materials. Springer Singapore, 2017. https://doi.org/10.1007/978-981-10-2434-4
Maugin G. y Trimarco C. Pseudo-momentum and material forces in nonlinear elasticity: Variational formulations and application to brittle fracture. Acta Mech., 94:1-28, 1992. https://doi.org/10.1007/BF01177002
Mori T. y Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5):571-574, 1973. https://doi.org/10.1016/0001-6160(73)90064-3
Mroginski J., Di Rado H., Beneyto P., y Awruch A. A finite element approach for multiphase fluid flow in porous media. Mathematics and Computers in Simulation, 81(1):76-91, 2010. https://doi.org/10.1016/j.matcom.2010.07.001
Mroginski J., Etse G., y Vrech S. A thermodynamical gradient theory for deformation and strain localization of porous media. International Journal of Plasticity, 27:620-634, 2011. https://doi.org/10.1016/j.ijplas.2010.08.010
Mura T. Micromechanics of defects in solids, 2nd revised edition. Martinus Nijhoff Publishers, 1987. https://doi.org/10.1007/978-94-009-3489-4
Noether E. Invariante variations probleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235-257, 1918.
Schrefler B. Computer modelling in environmental geomechanics. Computers & Structures, 79(22):2209-2223, 2001. https://doi.org/10.1016/S0045-7949(01)00076-1
Shen W., Kondo D., Dormieux L., y Shao J. A closed-form three scale model for ductile rocks with a plastically compressible porous matrix. Mechanics of Materials, 59:73-86, 2013. https://doi.org/10.1016/j.mechmat.2012.12.008
Shen W. y Shao J. An incremental micro-macro model for porous geomaterials with double porosity and inclusion. International Journal of Plasticity, 83:37-54, 2016. https://doi.org/10.1016/j.ijplas.2016.04.002
Steinmann P. Geometrical Foundations of Continuum Mechanics - An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer, Berlin, 2015. https://doi.org/10.1007/978-3-662-46460-1
Zaoui A. Continuum micromechanics: survey. J. Eng. Mech., 128(8):808-816, 2002. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808)
Zhu Q.Z., Yuan S.S., y Shao J.F. Microporomechanics of quasi-brittle rocks: Theoretical formulations and analytical simulations. International Journal of Plasticity, 171:103789, 2023. https://doi.org/10.1016/j.ijplas.2023.103789
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.