Saponification Modeling of an Ester in a Batch Reactor with OpenFOAM

Authors

  • Melisa I. Mendoza Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET). Santa Fe, Argentina.
  • Santiago F. Corzo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET). Santa Fe, Argentina.
  • Damián E. Ramajo Centro de Investigación de Métodos Computacionales (CIMEC-UNL/CONICET). Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i13.68

Keywords:

Saponification, batch reactor, chemFoam, reactingFoam

Abstract

Saponification is a chemical reaction in which an ester reacts with a base in the presence of water to form salts of fatty acids and alcohol. It is studied in a batch-type discontinuous reactor. The reaction rate depends on three key parameters: temperature, reactant concentration, and mixing speed of the mixture. For implementation in OpenFOAM(R), two solvers are used: chemFoam and reactingFoam. chemFoamresolves the chemistry in a concentrated manner, assuming perfect mixing, and provides the ideal evolution of the reaction, allowing the study of its dependence on temperature and initial reactant concentration, but the effect of agitation cannot be evaluated. On the other hand, the reactingFoam solver integrates chemistry with thermofluid dynamics and can analyze a wide range of initial reactor operating conditions. The implementation in reactingFoam was done by keeping temperature and initial concentration constant and varying only the agitator speed to evaluate conversion as a function of agitation level and compare it with experimental data showing that conversion rate decreases with increasing agitation. The numerical results showed good agreement with the experimental ones, but further study is needed on the relationship between turbulence and reaction rate.

References

Al-Mesfer M.K. Experimental study of batch reactor performance for ethyl acetate saponification. International Journal of Reactor Engineering, 2017. https://doi.org/10.1515/ijcre-2016-0174

Alegre A. Estudio de la hidrólisis de acetato de etilo en un reactor tanque discontinuo agitado. Informe Técnico, UNL, 2019.

Borovinskaya E. Khydarov V. S.N.M.A.R.W. Experimental study of ethyl acetate saponification using different reactor systems: The effect of volume flow rate on reactor performance and pressure drop. Applied Sciences.

Borujeni M. y Norouzi H. How to simulate combustion of a flame using . Informe Técnico, Center of Engineering and Multiscale Modeling of Fluid flow (CEMF), 2020.

Capitao Patrao A. Description and validation of the rotordisksource class for propeller performance estimation. Informe Técnico, Chalmers University of Technology, 2017.

Cheng M., Sheng Z., yWang J.P. Bycfoam: An improved solver for rotating detonation engines based on openfoam. Energies, 17(4):769, 2024. ISSN 1996-1073. https://doi.org/10.3390/en17040769

Duan X., Feng X., Yang C., y Mao Z. Cfd modeling of turbulent reacting flow in a semi-batch stirred-tank reactor. Chinese Journal of Chemical Engineering, 26(4):675-683, 2018. ISSN 1004-9541. https://doi.org/10.1016/j.cjche.2017.05.014

Farina I.H. Ferretti O.A. B.G. Introducción al diseño de reactores químicos, volumen 1. EDUBA,Buenos Aires. ISBN 950-23-0301-6, 1986.

Ferro B. Ramos R. B.A. Thermoelectric power plant performance and emission control simulation. CILAMCE 2019. Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC., 2019.

Fogler S.H. Elements of Chemical Reaction Engineering, volumen 3. Upper Saddle River, N.J.:Prentice Hall PTR. ISBN 0-13-531708-8, 1999.

Ghobashy M. Gadallah M. E.I.T.T.S.M.E.H.A. Kinetics study if hydrolysis of ethyl acetate using caustic soda. International Journal of Engineering Technology, 2018. https://doi.org/10.14419/ijet.v7i4.14083

Grau M. Nougués J. P.L. Comparative study of two chemical reactions with different behaviour in batch and semibatch reactors. Chemical Engineering Journal, 2002. https://doi.org/10.1016/S1385-8947(02)00027-X

Harris D.C. Quantitative Chemical Analysis. W. H. Freeman and Company. New York., 2007.

Kuheli D. Shaoo P. S.B.M.M.N.S.P. Kinetic studies of saponification of ethyl acetate using an innovative conductivity-monitoring instrument with a pulsating sensor. International Journal of Chemical Kinetics, 2011.

Lahaye D. Jureti'c F. T.M. Modeling a turbulent non-premixed combustion in a full-scale rotary cement kiln using reactingfoam. Energies 2022, 15, 9618, 2022. https://doi.org/10.3390/en15249618

Levenspiel O. Chemical reaction engineering, volumen 3. John Wiley Sons, Inc.United States of America. ISBN 0-471-25424-X., 1999.

Marchisio D.L., Barresi A.A., y Fox R.O. Simulation of turbulent precipitation in a semi-batch taylor-couette reactor using cfd. AIChE Journal, 47(3):664-676, 2001. ISSN 1547-5905. https://doi.org/10.1002/aic.690470314

Pichler M., Wesenauer F., Jordan C., Puskas S., Streibl B., Winter F., y Harasek M. Design and simulation of gas burner ejectors. Carbon Resources Conversion, 4:28-35, 2021. ISSN2588-9133. https://doi.org/10.1016/j.crcon.2021.01.006

Qi Yang Peng Zhao H.G. reactingfoam-sci: An open source cfd platform for reacting flow simulation. Computers and Fluids 190 114-127. Elsevier, 2019. https://doi.org/10.1016/j.compfluid.2019.06.008

Santos-Moreau V., Brunet-Errard L., y Rolland M. Numerical cfd simulation of a batch stirred tank reactor with stationary catalytic basket. Chemical Engineering Journal, 207-208:596- 606, 2012. ISSN 1385-8947. https://doi.org/10.1016/j.cej.2012.07.020

Smith H. L.H. Kinetics of the saponification of the ethyl esters of several phenyl substituted aliphatic acids. American Chemical Society, 61, 1172-1175, 1939. https://doi.org/10.1021/ja01874a048

Tsujikawa H. I.H. The reaction rate of alkaline hydrolysis of ethyl acetate. Bulletin of the Chemical Society of Japan, 39: 1837-1842, 1966. https://doi.org/10.1246/bcsj.39.1837

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024