Challenges in the Simulation of Vorticity-Dominated Flows: Advantages, Limitations, and Perspectives of Incorporating Vortex Particles into Traditional Methods
DOI:
https://doi.org/10.70567/mc.v41i14.73Keywords:
Vortex Lattice Method, Vortex Particle Method, Unsteady AerodynamicsAbstract
The concept of vorticity-dominated flow has been widely used in the formulation of aerodynamic simulation methods. This work extends the unsteady vortex lattice method (UVLM) by incorporating the vortex particle method (VPM), a hybrid model that combines particles and vortex segments. The use of VPM eliminates the wake mesh structure, but it can be unstable and may require additional considerations for implementation. In this regard, a series of cases are analyzed to highlight the benefits, identify potential drawbacks, and provide recommendations on the use of VPM. The results contribute to understanding the challenges associated with VPM implementation and offer valuable insights into leveraging its advantages in various aerodynamic interaction applications and flows around submerged bodies.
References
Alvarez E.J. y Ning A. Reviving the vortex particle method: A stable formulation for meshless large eddy simulation. Arxiv, 2206.03658, 2022.
Bak C., Zahle F., Bitsche R., Kim T., Yde A., Henriksen L., Hansen M., Blasques J., Gaunaa M., y Natarajan A. The dtu 10-mw reference wind turbine. 2013. Danish Wind Power Research 2013 ; Conference date: 27-05-2013 Through 28-05-2013.
Cottet G.H. y Koumoutsakos P.D. Vortex Methods: Theory and Practice. Cambridge University Press, 2000. https://doi.org/10.1017/CBO9780511526442
Drela M. Flight Vehicle Aerodynamics. The MIT Press, 2014.
Helmbold H. Der unverwundene ellipsenflugel als tragende flanche. Jahrbuch, páginas I111-I113, 1942.
Mimeau C. y Mortazavi I. A review of vortex methods and their applications: From creation to recent advances. Fluids, 2021. https://doi.org/10.3390/fluids6020068
Pedrizzetti G. Insight into singular vortex flows. Fluid Dynamics Research, 10:101-115, 1991. https://doi.org/10.1016/0169-5983(92)90011-K
Preidikman S. Numerical simulations of interactions among aerodynamics, structural dynamics, and control systems. Viginia Tech, 1998.
Pérez Segura M.E. Implementación Computacional del Método de Red de Vórtices Inestacionario: Una Versión Basada en los Paradigmas de Programación Orientada a Objetos y Co-Simulación. Universidad Nacional de Córdoba, 2018.
Ribero S., Pérez Segura M.E., Aichino A., Beltramo E., Roccia B.A., y Preidikman S. Un método de red de vórtices inestacionario modificado utilizando partículas vorticosas para simulaciones aerodinámicas. parte i: Formulación matemática. Mecánica Computacional, 15:1005-1014, 2023.
Roccia B.A., Ceballos L.R., Verstraete M.L., y Gebhardt C.G. Development and application of a mesh generator intended for unsteady vortex-lattice method simulations of wind turbines and wind farms. Wind Energy Science, 9(2):385-416, 2024. doi:10.5194/wes-9-385-2024. https://doi.org/10.5194/wes-9-385-2024
Winckelmans G.S. y Leonard A. Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. Journal of computational physics, 109:247-273, 1993. https://doi.org/10.1006/jcph.1993.1216
Wu J.C. y Thomson J.F. Numerical solutions of time-dependent incompressible navier-stokes equations using an integro-diffential formulation. Computers & Fluids, 1:197-215, 1973. https://doi.org/10.1016/0045-7930(73)90018-2
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.