New Methodology for the Differentiation of One-Dimensional Discrete Signals Through the Use of Geometric Features

Authors

  • Hernán M. García Blesa Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Centro de Procesamiento de Señales e Imágenes. Ciudad Autónoma de Buenos Aires, Argentina.
  • Juan Vorobioff Universidad Tecnológica Nacional, Facultad Regional Buenos Aires. Ciudad Autónoma de Buenos Aires, Argentina.
  • Walter Legnani Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Centro de Procesamiento de Señales e Imágenes. Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i15.79

Keywords:

amplitud, ángulo de zenit, factor de forma, diferenciación de señales

Abstract

This study focuses on the application of an algorithm for the classification of chaotic dynamical
systems, including the Henón, Chirikov, Schuster, Logistic, and Ricker population model systems.
The algorithm employs the sweep technique as its main mechanism, for which an embedding dimension
and a discretization parameter are defined. Classification of chaotic dynamical systems is carried
out by extracting geometric features. The methodology utilizes three elements: signal amplitude, Zenith
angle, and a shape factor, generating triplets and reducing those that repeat during the process. From
these data, a feature space is created where each vector is unique. In addition to classification, a detailed
analysis of the space generated by the algorithm is performed, which provides additional information
complementing the classification performed.

References

Boaretto B.R.R., Budzinski R.C., Rossi K.L., Prado T.L., Lopes S.R., y Masoller C. Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks. 2021. https://doi.org/10.1038/s41598-021-95231-z

Cencini M., Cecconi F., y Vulpiani A. Chaos: from simple models to complex systems (Advances in Statistical Mechanics). World Scientific Publishing Company, 2009. https://doi.org/10.1142/7351

Devaney R. A first course in chaotic dynamical systems: Theory and experiment. Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429280665

Keller K., Mangold T., Stolz I., y Werner J. Permutation entropy: New ideas and challenges. Entropy, 19(3):134, 2017. https://doi.org/10.3390/e19030134

May R. y McLean A.R. Theoretical ecology: principles and applications. Oxford University Press, 2007. https://doi.org/10.1093/oso/9780199209989.001.0001

Olivares F., Souza L., Legnani W., y Rosso O. Informational time causal planes: A tool for chaotic map dynamic visualization. En Nonlinear Systems-Theoretical Aspects and Recent Applications. 2019. https://doi.org/10.5772/intechopen.88107

Pinsky M.A. Introduction to Fourier analysis and wavelets, volumen 102. American Mathematical Society, 2023.

Strang G. Wavelet transforms versus fourier transforms. Bulletin of the American Mathematical Society, 28(2):288-305, 1993. https://doi.org/10.1090/S0273-0979-1993-00390-2

Tangirala A.K. Principles of system identification: Theory and practice. Crc Press, 2018. https://doi.org/10.1201/9781315222509

Published

2024-11-08