Optimum Distribution of Minimum Printing Time Structures for Additive Manufacturing

Authors

  • Augusto A. Romero Onco Universidad Tecnológica Nacional, Facultad Regional Córdoba, Grupo de Investigación y Desarrollo en Mecánica Aplicada & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Córdoba, Argentina.
  • Sebastián M. Giusti Universidad Tecnológica Nacional, Facultad Regional Córdoba, Grupo de Investigación y Desarrollo en Mecánica Aplicada & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Córdoba, Argentina.
  • Marcos Vicentín Universidad Tecnológica Nacional, Facultad Regional Córdoba, Grupo de Investigación y Desarrollo en Mecánica Aplicada. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i16.86

Keywords:

3D Printing, Topological Optimization (Structural Optimization), Minimum printing time

Abstract

Fused Deposition Modeling (FDM) is an additive manufacturing technique characterized by its capability to manufacture parts with complex geometries, whose main disadvantage is long printing times. There is an inverse relation between the printing time and the stiffness of the final part, thus, the solution to different application cases is a technical-economic decision. Based on this, this work proposes a strategy to determine the optimal distribution of the printing patterns that allow for obtaining the highest possible stiffness of the part with the shortest printing time. The contribution of printing the in-fill regions and the interfaces that divide them to the total process time is considered. The pattern distribution is obtained using a level-set topological derivative-based multimaterial topology optimization algorithm. Fundamental concepts of the method and the printing time cost function characterization are presented. Also, several numerical application examples and implementation of the method in real cases of FDM are shown.

References

Amstutz S., Dapogny C., y Ferrer A. A consistent approximation of the total perimeter functional for topology optimization algorithms. ESAIM: Control, Optimisation and Calculus of Variations, 28:18, 2022.

https://doi.org/10.1051/cocv/2022005

Arabnejad S. y Pasini D. Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. International Journal of Mechanical Sciences, 77:249-262, 2013.

https://doi.org/10.1016/j.ijmecsci.2013.10.003

Giusti S.M., Ferrer A., y Oliver J. Topological sensitivity analysis in heterogeneous anisotropic elasticity problem. Theoretical and computational aspects. Computer Methods in Applied Mechanics and Engineering, 311:134-150, 2016.

https://doi.org/10.1016/j.cma.2016.08.004

Guardiola M.M., Perassolo C.N., Vicentin M., Onco A.R., y Giusti S.M. Obtención de la distribución de estructuras de impresión de mínimo tiempo para la fabricación aditiva. En Mecánica Computacional, volumen 39, páginas 1027-1036. 2022.

Onco A.R. y Giusti S.M. A robust topological derivative-based multi-material optimization approach: Optimality condition and computational algorithm. Computer Methods in Applied Mechanics and Engineering, 366:113044, 2020.

https://doi.org/10.1016/j.cma.2020.113044

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024