Machines Operating Conditions Classification Based on Mechanical Vibrations with Machine Learning Techniques

Authors

  • Emmanuel Beltramo Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT-UNC/CONICET) & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Martín E. Pérez Segura Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT-UNC/CONICET) & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Santiago Ribero Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Agostina C. Aichino Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT-UNC/CONICET) & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Bruno A. Roccia Bergen Offshore Wind Centre (BOW), University of Bergen, Geophysical Institute. Bergen, Norway.
  • Sergio Preidikman Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT-UNC/CONICET) & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i19.99

Keywords:

Machine learning, faults classification, mechanical vibrations

Abstract

The analysis machinery mechanical vibrations using machine learning techniques in order to characterize its operating condition is still in an exploratory stage. In this work, an intelligent classification system for the operating condition of machines based on a 1D convolutional neural network is proposed. After its training, the network is designed describe: i) the normal operating condition (speed and load level); and ii) the abnormal operating condition, discerning between four possible causes (misalignment, imbalance, bearing failure and lack of lubrication). The data set used includes synthetic and experimental signals. The results obtained are promising, showing a potential for the architecture to successfully fulfill its objective.

References

Alzghoul A., Jarndal A., Alsyouf I., Bingamil A.A., Ali M.A., y AlBaiti S. On the usefulness of pre-processing methods in rotating machines faults classification using artificial neural network. Jorunal of Applied and Computational Mechanics, 7(1):254-261, 2021.

Atmaja B.T., Ihsannur H., Suyanto, y Arifianto D. Lab-scale vibration analysis dataset and baseline methods for machinery fault diagnosis with machine learning. Journal of Vibration Engineering & Technologies, 12(2):1991-2001, 2024. https://doi.org/10.1007/s42417-023-00959-9

Lei Y., Yang B., Jiang X., Jia F., Li N., y Nandi A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical systems and signal processing, 138:106587, 2020. https://doi.org/10.1016/j.ymssp.2019.106587

Liu R., Yang B., Zio E., y Chen X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108:33-47, 2018. https://doi.org/10.1016/j.ymssp.2018.02.016

Muszynska A. Rotordynamics. CRC press, 2005. https://doi.org/10.1201/9781420027792

Sinha J.K. Industrial approaches in vibration-based condition monitoring. CRC Press, 2020. https://doi.org/10.1201/9781315147222

Souza R.M., Nascimento E.G., Miranda U.A., Silva W.J., y Lepikson H.A. Deep learning for diagnosis and classification of faults in industrial rotating machinery. Computers & Industrial Engineering, 153:107060, 2021. https://doi.org/10.1016/j.cie.2020.107060

Zhao R., Yan R., Chen Z., Mao K., Wang P., y Gao R.X. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115:213-237, 2019. https://doi.org/10.1016/j.ymssp.2018.05.050

Zhu Z., Lei Y., Qi G., Chai Y., Mazur N., An Y., y Huang X. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement, 206:112346, 2023. https://doi.org/10.1016/j.measurement.2022.112346

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024

Most read articles by the same author(s)