A Trapezoidal Rule for Nodal Integration of Linear Quadrilaterals in Plasticity
DOI:
https://doi.org/10.70567/mc.v41i10.55Palabras clave:
Nodal Integration, Finite Elements, Plasticity, Bilinear QuadrilateralsResumen
In this work we present a nodal integrated linear quadrilateral, that is, with only integration points at the nodes of the element for plasticity applications. A trapezoidal rule is used instead of the classical Gaussian rules for the integration of the nonlinear stiffness matrix. In principle, this numerical integration rule should be discarded since it cannot exactly integrate the stiffness matrices, even in the limit when the element size becomes infinitesimal. However, the internal forces are correctly calculated and the element is convergent. Comparisons are shown with other formulations and the element appears to be very effective.
Citas
Alexandrov S. Elastic/Plastic Discs Under Plane Stress Conditions. Springer, 2015. https://doi.org/10.1007/978-3-319-14580-8
Arnold D., Boffi D., and Falk R. Approximation by quadrilateral finite elements. Mathematics of Computation, 71(239):909-922, 2002. https://doi.org/10.1090/S0025-5718-02-01439-4
Atkinson K.E. An Introduction to Numerical Analysis. Wiley, 2 edition, 1989.
Babu D.K. and Pinder G.F. Analytical integration formulae for linear isoparametric finite elements. International Journal for Numerical Methods in Engineering, 20(6):1153-1163, 1984. https://doi.org/10.1002/nme.1620200613
Beissel S. and Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 139(1-4):49-74, 1996. https://doi.org/10.1016/S0045-7825(96)01079-1
Belytschko T., Ong J.S.J., Liu W.K., and Kennedy J.M. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43(3):251-276, 1984. https://doi.org/10.1016/0045-7825(84)90067-7
Flanagan D.P. and Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering, 17(5):679-706, 1981. https://doi.org/10.1002/nme.1620170504
Hansbo P. A new approach to quadrature for finite elements incorporating hourglass control as a special case. Computer Methods in Applied Mechanics and Engineering, 158(3-4):301-309,1998. https://doi.org/10.1016/S0045-7825(97)00257-0
Hughes T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000.
Irons B. and Ahmad S. Techniques of Finite Elements. E. Horwood, 1980. https://doi.org/10.1115/1.3153836
Jacquotte O.P. and Oden J.T. Analysis of hourglass instabilities and control in underintegrated finite element methods. Computer Methods in Applied Mechanics and Engineering, 44(3):339-363, 1984. https://doi.org/10.1016/0045-7825(84)90135-X
Kosloff D. and Frazier G.A. Treatment of hourglass patterns in low order finite element codes. International Journal for Numerical and Analytical Methods in Geomechanics, 2(1):57-72, 1978. https://doi.org/10.1002/nag.1610020105
Liu W.K. and Belytschko T. Efficient linear and nonlinear heat conduction with a quadrilateral element. International Journal for Numerical Methods in Engineering, 20(5):931-948, 1984. https://doi.org/10.1002/nme.1620200510
Liu W.K., Guo Y., Tang S., and Belytschko T. A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Computer Methods in Applied Mechanics and Engineering, 154(1):69-132, 1998. https://doi.org/10.1016/S0045-7825(97)00106-0
Liu W.K., Hu Y.K., and Belytschko T. Multiple quadrature underintegrated finite elements. International Journal for Numerical Methods in Engineering, 37(19):3263-3289, 1994. https://doi.org/10.1002/nme.1620371905
Liu W.K., Ong J.S.J., and Uras R.A. Finite element stabilization matrices-a unification approach. Computer Methods in Applied Mechanics and Engineering, 53(1):13-46, 1985. https://doi.org/10.1016/0045-7825(85)90074-X
Morrev P.G. and Gordon V.A. An axisymmetric nodal averaged finite element. Latin American Journal of Solids and Structures, 15(2):e14, 2018. https://doi.org/10.1590/1679-78254349
Puso M.A. and Solberg J. A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering, 67(6):841-867, 2006. https://doi.org/10.1002/nme.1651
Rathod H.T. Some analytical integration formulae for a four node isoparametric element. Computers & Structures, 30(5):1101-1109, 1988. https://doi.org/10.1016/0045-7949(88)90153-8
Reddy J.N. Energy Principles and Variational Methods in Applied Mechanics. John Wiley & Sons, 2 edition, 2002.
Schulz J.C. Finite element hourglassing control. International Journal for Numerical Methods in Engineering, 21(6):1039-1048, 1985. https://doi.org/10.1002/nme.1620210606
Yuan K.Y., Huang Y.S., and Pian T.H.H. Inverse mapping and distortion measures for quadrilaterals with curved boundaries. 37(5):861-875, 1994. https://doi.org/10.1002/nme.1620370510
Zienkiewicz O.C. and Hinton E. Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates). Journal of the Franklin Institute, 302(5-6):443-461, 1976. https://doi.org/10.1016/0016-0032(76)90035-1
Zienkiewicz O.C., Taylor R.L., and Zhu J.Z. The Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 7th edition, 2013.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.