A Trapezoidal Rule for Nodal Integration of Linear Quadrilaterals in Plasticity

Autores

  • José Manuel Pereiras Universidad Tecnológica Nacional, Facultad Regional General Pacheco, Departamento de Ingeniería Civil. General Pacheco, Tigre, Buenos Aires, Argentina.
  • Claudio E. Jouglard Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Departamento de Ingeniería Civil. Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i10.55

Palavras-chave:

Nodal Integration, Finite Elements, Plasticity, Bilinear Quadrilaterals

Resumo

In this work we present a nodal integrated linear quadrilateral, that is, with only integration points at the nodes of the element for plasticity applications. A trapezoidal rule is used instead of the classical Gaussian rules for the integration of the nonlinear stiffness matrix. In principle, this numerical integration rule should be discarded since it cannot exactly integrate the stiffness matrices, even in the limit when the element size becomes infinitesimal. However, the internal forces are correctly calculated and the element is convergent. Comparisons are shown with other formulations and the element appears to be very effective.

Referências

Alexandrov S. Elastic/Plastic Discs Under Plane Stress Conditions. Springer, 2015. https://doi.org/10.1007/978-3-319-14580-8

Arnold D., Boffi D., and Falk R. Approximation by quadrilateral finite elements. Mathematics of Computation, 71(239):909-922, 2002. https://doi.org/10.1090/S0025-5718-02-01439-4

Atkinson K.E. An Introduction to Numerical Analysis. Wiley, 2 edition, 1989.

Babu D.K. and Pinder G.F. Analytical integration formulae for linear isoparametric finite elements. International Journal for Numerical Methods in Engineering, 20(6):1153-1163, 1984. https://doi.org/10.1002/nme.1620200613

Beissel S. and Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 139(1-4):49-74, 1996. https://doi.org/10.1016/S0045-7825(96)01079-1

Belytschko T., Ong J.S.J., Liu W.K., and Kennedy J.M. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43(3):251-276, 1984. https://doi.org/10.1016/0045-7825(84)90067-7

Flanagan D.P. and Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering, 17(5):679-706, 1981. https://doi.org/10.1002/nme.1620170504

Hansbo P. A new approach to quadrature for finite elements incorporating hourglass control as a special case. Computer Methods in Applied Mechanics and Engineering, 158(3-4):301-309,1998. https://doi.org/10.1016/S0045-7825(97)00257-0

Hughes T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000.

Irons B. and Ahmad S. Techniques of Finite Elements. E. Horwood, 1980. https://doi.org/10.1115/1.3153836

Jacquotte O.P. and Oden J.T. Analysis of hourglass instabilities and control in underintegrated finite element methods. Computer Methods in Applied Mechanics and Engineering, 44(3):339-363, 1984. https://doi.org/10.1016/0045-7825(84)90135-X

Kosloff D. and Frazier G.A. Treatment of hourglass patterns in low order finite element codes. International Journal for Numerical and Analytical Methods in Geomechanics, 2(1):57-72, 1978. https://doi.org/10.1002/nag.1610020105

Liu W.K. and Belytschko T. Efficient linear and nonlinear heat conduction with a quadrilateral element. International Journal for Numerical Methods in Engineering, 20(5):931-948, 1984. https://doi.org/10.1002/nme.1620200510

Liu W.K., Guo Y., Tang S., and Belytschko T. A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Computer Methods in Applied Mechanics and Engineering, 154(1):69-132, 1998. https://doi.org/10.1016/S0045-7825(97)00106-0

Liu W.K., Hu Y.K., and Belytschko T. Multiple quadrature underintegrated finite elements. International Journal for Numerical Methods in Engineering, 37(19):3263-3289, 1994. https://doi.org/10.1002/nme.1620371905

Liu W.K., Ong J.S.J., and Uras R.A. Finite element stabilization matrices-a unification approach. Computer Methods in Applied Mechanics and Engineering, 53(1):13-46, 1985. https://doi.org/10.1016/0045-7825(85)90074-X

Morrev P.G. and Gordon V.A. An axisymmetric nodal averaged finite element. Latin American Journal of Solids and Structures, 15(2):e14, 2018. https://doi.org/10.1590/1679-78254349

Puso M.A. and Solberg J. A stabilized nodally integrated tetrahedral. International Journal for Numerical Methods in Engineering, 67(6):841-867, 2006. https://doi.org/10.1002/nme.1651

Rathod H.T. Some analytical integration formulae for a four node isoparametric element. Computers & Structures, 30(5):1101-1109, 1988. https://doi.org/10.1016/0045-7949(88)90153-8

Reddy J.N. Energy Principles and Variational Methods in Applied Mechanics. John Wiley & Sons, 2 edition, 2002.

Schulz J.C. Finite element hourglassing control. International Journal for Numerical Methods in Engineering, 21(6):1039-1048, 1985. https://doi.org/10.1002/nme.1620210606

Yuan K.Y., Huang Y.S., and Pian T.H.H. Inverse mapping and distortion measures for quadrilaterals with curved boundaries. 37(5):861-875, 1994. https://doi.org/10.1002/nme.1620370510

Zienkiewicz O.C. and Hinton E. Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates). Journal of the Franklin Institute, 302(5-6):443-461, 1976. https://doi.org/10.1016/0016-0032(76)90035-1

Zienkiewicz O.C., Taylor R.L., and Zhu J.Z. The Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 7th edition, 2013.

Downloads

Publicado

2024-11-08

Edição

Seção

Artigos completos da conferência MECOM 2024