Computational and Experimental Analysis of French and Belgian Cello Bridges with Different Materials

Authors

  • Maximiliano Carnelutto Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Mecánica Computacional & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campana, Argentina.
  • Pablo E. Paupy Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Vibraciones Mecánicas. Campana, Argentina.
  • Lucas P. Manera Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Mecánica Computacional. Campana, Argentina.
  • Dario Huggenberger Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Vibraciones Mecánicas. Campana, Argentina.
  • José Folgueiras Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Fotónica Aplicada & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campana, Argentina.
  • Javier L. Raffo Universidad Tecnológica Nacional, Facultad Regional Delta, Grupo de Mecánica Computacional & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campana, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8369

Keywords:

Cello, bridge, vibrations, deformations

Abstract

This paper presents a comparison of the modal responses obtained for various materials in a French and a Belgian cello bridge using finite element simulation. The influence of the added mass of the sensors on the structural response is determined. Results of natural frequencies obtained from laboratory measurements are compared. The influence of the mass and densities of the proposed materials on the bridges’ response is analyzed. All the results obtained from the French and Belgian bridges, two emblematic bridges of traditional Lutherie, are related to the changes observed in the response of each material.

References

ASTM International. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. Norma E976-00, 2000.

Bendat J.S. y Piersol A.G. Random data: analysis and measurement procedures, volumen . John Wiley Sons, 2011.

Bryzek J., Roundy S., Bircumshaw B., Chung C., Castellino K., Stetter J., y Vestel M. Marvelous mems. IEEE CIRCUITS DEVICES MAGAZINE, 22(2):8–28, 2006. https://doi.org/10.1109/ICSENS.2009.5398189.

Bynum E. y Rossing T.D. Holographic studies of cello vibrations. ISMA, 19, 1997.

Carnelutto M., Paupy P.E., Manera L.M., Huggenberger D., Folgueiras J.M., y Raffo J.L. Análisis de las vibraciones de puentes de violonchelo utilizando diferentes modelos computacionales y ensayos de laboratorio. AMCA, 41:13–21, 2024. https://doi.org/10.70567/mc.v41i1.2.

D’Alessandro A., Vitale G., Scudero S., D’Anna R., Constanza A., Greco L., y Fagiolini A. Characterization ofmems accelerometer self-noise by means ofpsd and allan variance analysis. 7th IEEE International workshop on advances in sensors and interfaces (IWASI), IEEE, páginas 159–164, 2017.

Elie B., Gautier F., y Bertrand D. Analysis of bridge mobility of violins. Stockholm Music Acoustics Conference 2013, páginas pp. 54–59, 2016. https://hal.science/hal-01060528v1.

Hollocher D., Zhang X., Sparks A., Bart S., y Sawyer W. N.P. A very low cost, 3-axis, MEMS accelerometer for consumer applications. IEEE SENSORS 2009 Conference, páginas 953–957, 2009. doi:10.1109/ICSENS.2009.5398189.

Jansson E. V., Barczewski R., y Kabala A. On the violin bridge hill–comparison of experimental testing and FEM. Vibrations in Physical Systems, 27:151–60, 2016.

Kabala A., Niewczyk B., y Gapi´nski B. Violin bridge vibrations-FEM. Vibrations in Physical Systems, 29:1–7, 2018.

Kishi K. Influence of the Weight of Mutes on Tones of a Violin Family. The Journal, 13:1477–1478, 1998. http://dx.doi.org/10.1121/1.422097

Lodetti L., Gonzalez S., Antonacci F., y Sarti A. Stiffening Cello Bridges with Design. Applied Sciences, 13(2):928, 2023. http://dx.doi.org/10.3390/app13020928.

Paupy P.E., Tabla P.M., Huggenberger D.A., Elfi F., Morel E.N., y Torga J.R. Determination of the elastic constant of the top plate of a cello in the interaction with the bridge. Archives of Acoustics, 50 (1):123–134, 2025. http://dx.doi.org/10.24425/aoa.2025.153658.

RaymaekersW. Bridge shapes of the violin and other bowed instruments, 1400–1900: the origin and evolution of their design. Early Music, 48(2):225–250, 2020.

Rodgers O. E. y.T.R.M. The effect of wood removal on bridge frequencies. Catgut. Acoust, Soc. J 1:6–10, 1990.

Zhang A., Woodhouse J., y Stoppani G. Motion of the cello bridge. The Journal of the Acoustical Society of America, 140(4):2636–45, 2016.

Zienkiewicz O. y Taylor R. Modal testing: theory, practice and application, volumen . John Wiley Sons, 2009.

Published

2025-11-27