Modeling with LDEM Using Different Mesh Sizes

Authors

  • Uemerson Soares de Andrade Federal University of Pampa, Modeling and Analysis Experimental of Composites Group, Engineering Post Graduation Program. Alegrete, Brazil.
  • Caroline Bremm Federal University of Pampa, Modeling and Analysis Experimental of Composites Group, Engineering Post Graduation Program. Alegrete, Brazil.
  • Amanda Martins de Lima Federal University of Pampa, Modeling and Analysis Experimental of Composites Group, Engineering Post Graduation Program. Alegrete, Brazil.
  • Ederli Marangon Federal University of Pampa, Modeling and Analysis Experimental of Composites Group, Engineering Post Graduation Program. Alegrete, Brazil.
  • Luis Eduardo Kosteski Federal University of Pampa, Modeling and Analysis Experimental of Composites Group, Engineering Post Graduation Program. Alegrete, Brazil.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8540

Keywords:

Manhole cover, Distinct meshes, Lattice Discrete Element Method

Abstract

In the Lattice Discrete Element Method (LDEM), the solid is represented by a spatial truss, with masses concentrated at the nodes and stiffness defined by the constitutive ratio of the bar elements. Traditionally, this truss is constructed by repeating a cubic module, which requires the geometry of the modeled solid to be a multiple of the size of this elementary cube. Specific changes in node positions can also be made to improve the fit, but even combining these strategies, it is not always feasible to represent more complex geometries with reasonable elementary module sizes. This work uses the LDEM version implemented in the Abaqus/Explicit environment. The software enabled the interaction between different parts of the model with different mesh sizes (elementary modules). In the first stage of the study, a simple geometry with different mesh sizes connected by various connection techniques was modeled. Subsequently, the response of a cantilever beam with different mesh sizes was validated. Following this validation, a more complex numerical model was developed, representing the structure of a steel fiber-reinforced concrete manhole cover. This model applied previously tested strategies, aiming to more realistically represent areas of high stress concentration and potential damage.

References

ABNT: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 10160: 2005: Tampões e grelhas de ferro fundido dúctil - Requisitos e métodos de ensaios. Rio de Janeiro, 2005.

Hillerborg, A., Modéer, M., & Petersson, P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773-782. 1976. https://doi.org/10.1016/0008-8846(76)90007-7.

Huang, P., Pan, X., Niu, Y., Du, L. Concrete failure simulation method based on discrete element method. Engineering Failure Analysis, 139, 106505. 2022. https://doi.org/10.1016/j.engfailanal.2022.106505.

Iturrioz I., Miguel L.F.F., Riera J.D., “Dynamic fracture analysis of concrete or rock plates by means of the Discrete Element Method”, LAJSS, Vol. 6, pp. 229-245. 2009.

Kosteski, L. E., Friedrich, L. F., Costa, M. M., Bremm, C., Iturrioz, I., Xu, J., & Lacidogna, G. Fractal scale effect in quasi-brittle materials using a version of the discrete element method. Fractal and Fractional, 8(12), 678. 2024. https://doi.org/10.3390/fractalfract8120678.

Kosteski, L. E., Iturrioz, I., Ronchei, C., Scorza, D., Zanichelli, A., & Vantadori, S. Experimental and combined finite-discrete element simulation of the fracture behaviour of a rigid polyurethane foam. Engineering fracture mechanics. Vol. 296 (Feb. 2024), art. 109818, p. 1-24. 2024. https://doi.org/10.1016/j.engfracmech.2023.109818.

Kosteski, L., Pinto, O., & Iturrioz, I. Combinação entre o Método dos Elementos Discretos Compostos por Barras e o Método dos Elementos Finitos no Ambiente Abaqus. Mecánica Computacional, 29(52), 5259-5283. (2010).

Kosteski, L.; Barrios D'Ambra R ; Iturrioz I . Crack propagation in elastic solids using the trusslike discrete element method. International Journal of Fracture, v. 174, p. 139-161, 2012.

Nayfeh, A. H., & Hefzy, M. S. Continuum modeling of three-dimensional truss-like space structures. Aiaa journal, 16(8), 779-787. 1978. https://doi.org/10.2514/3.7581.

Riera JD, Iturrioz I. Discrete element dynamic response of elastoplastic shells subjected to impulsive loading. Communications in Num. Meth. in Eng., Vol. 11, pp. 417-426.1995. https://doi.org/10.1002/cnm.1640110506.

Silva, G. S., Kosteski, L. E., & Iturrioz, I. Analysis of the failure process by using the Lattice Discrete Element Method in the Abaqus environment. Theoretical and applied fracture mechanics, 107, 102563. 2020. https://doi.org/10.1016/j.tafmec.2020.102563.

Vidal, C.D.M.; Da Silva, G.S.; Valsecchi, C.; Kosteski, L.E. Analysis of strength of brittle materials under different strain rates using LDEM simulations. Rev. Sul-americana Eng. Estrutural, 17, 40–59, 2020. https://doi:10.5335/rsaee.v17i1.10043.

Zanichelli, A., Colpo, A., Friedrich, L., Iturrioz, I., Carpinteri, A., & Vantadori, S. A novel implementation of the LDEM in the ansys LS-DYNA finite element code. Materials, 14(24), 7792. 2021. https://doi.org/10.3390/ma14247792.

Published

2025-12-03

Issue

Section

Conference Papers in MECOM 2025

Most read articles by the same author(s)