Using Artificial Intelligence in Numerical Methods Courses: Risks and Opportunities

Authors

  • César I. Pairetti Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentin.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8396

Keywords:

Coding, CAE, LLM, Workshop

Abstract

In many engineering courses, students use Finite Element Method (FEM) software without knowing its fundamentals, assuming results as valid even when they lack physical meaning. Similarly, Large Language Models (LLM) such as GPT or Deepseek allow code generation for Computational Fluid Dynamics (CFD), but without ensuring understanding of the algorithmic logic or mathematical foundations. While these tools facilitate obtaining basic code fragments, their uncritical use increases the risk of modeling and implementation errors. This work proposes a pedagogical approach in which students produce, translate, and optimize code with LLM support, based on traditional bibliographic references. Line-by-line review favors understanding of program structure, implementation logic, and criteria for validating results. The methodology was evaluated in two editions of the CFD course for the Mechanical Engineering degree. Students showed a stronger understanding of numerical methods compared to previous cohorts, and in final interviews they expressed a more critical view regarding the use of Artificial Intelligence tools in learning

References

Alomá Bello M., Crespo Díaz L.M., González Hernández K., and Estévez Pérez N. Fundamentos cognitivos y pedagógicos del aprendizaje activo. Mendive. Revista de Educación, 20(4):1353–1368, 2022.

Chen Z., Kumar A., and Singh L. On the use of large language models in programming education. Journal of Educational Computing Research, 61(4):754–775, 2023. http://doi.org/10.1177/07356331231102587.

Dyke S.J. and Friswell M.I. Teaching computational mechanics: Challenges and methods. Computers Structures, 199:1–12, 2018. http://doi.org/10.1016/j.compstruc.2017.11.006.

Felippa C.A. Teaching finite element method: Reflections and perspectives. Engineering Computations, 32(7):2141–2158, 2015. http://doi.org/10.1108/EC-01-2015-0024.

Fleuret F. The little book of deep learning. University of Geneva, 2024

.

Holmes W., Bialik M., and Fadel C. Artificial Intelligence inEducation: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign, Boston, MA, 2019.

Logan J.D. Applied Mathematics. Wiley, Hoboken, NJ, 2012.

López-Belmonte J., Dúo-Terrón P., Marín-Marín J.A., and Moreno-Guerrero A.J. Machine learning as a methodological resource in the classroom. In Artificial Intelligence of Things for Achieving Sustainable Development Goals, pages 233–253. Springer, 2024.

Luckin R., Holmes W., Griffiths M., and Forcier L.B. Intelligence Unleashed: An Argument for AI in Education. Pearson, 2016. https://www.pearson.com/uk/educators/higher-education-educators/programs-and-services/intelligence-unleashed.html.

Mitchell M. Artificial Intelligence: A Guide for Thinking Humans. Farrar, Straus and Giroux, New York, NY, 2019.

Mitchell M. Artificial intelligence learns to reason. 2025.

Moukalled F., Mangani L., and Darwish M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab, volume 113 of Fluid Mechanics and Its Applications. Springer, 2016. ISBN 978-3-319-16874-6.

Ng J.K.K., Lee S.T., and Tan P.M. Ai-assisted learning: Opportunities and challenges. Educational Technology Research and Development, 71:1–20, 2023. http://doi.org/10.1007/s11423-023-10175-0.

Pairetti C.I., Trivisonno N., Godino D., and Venier C.M. Diseño de un taller de cfd para la enseñanza de fundamentos del método de volúmenes finitos. In Mecánica Computacional, volume XL, pages 1549–1558. Asociación Argentina de Mecánica Computacional, Concordia, Argentina, 2023. ISBN 978-987-781-123-2.

Plevris V. and Markeset G. Educational challenges in computer-based finite element analysis and design of structures. 2018.

Pérez J., Garcia M., and Lopez L. Chatgpt in stem education: A double-edged sword. International Journal of STEM Education, 10(20), 2023. http://doi.org/10.1186/s40594-023-00401-2.

Shean R., Shah T., Sobhani S., Tang A., Setayesh A., Bolo K., Nguyen V., and Xu B. Openai o1 large language model outperforms gpt-4o, gemini 1.5 flash, and human test takers on ophthalmology board-style questions. Ophthalmology Science, page 100844, 2025.

Tramallino C., Pairetti C., and Rodríguez G.L. Reflexiones en torno al uso de ia en educación superior: dos casos comparados. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, (37):e9–e9, 2024.

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., and Polosukhin I. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Versteeg H.K. and Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow, England, 2nd edition, 2007. ISBN 9780131274983.

Wang Y., Guo D., and Zhang Y. Chatgpt as a tutoring assistant in higher education programming courses. Computers Education: Artificial Intelligence, 4:100117, 2023. http://doi.org/10.1016/j.caeai.2023.100117.

Zhong T., Liu Z., Pan Y., Zhang Y., Zhou Y., Liang S., Wu Z., Lyu Y., Shu P., Yu X., et al. Evaluation of openai o1: Opportunities and challenges of agi. arXiv preprint arXiv:2409.18486, 2024.

Published

2025-12-07

Issue

Section

Conference Papers in MECOM 2025