Failure Analysis of Anisotropic Materials with Embedded Fibres Using the Extended Lumped Damage Mechanics
DOI:
https://doi.org/10.70567/mc.v42.ocsid8366Keywords:
Anisotropic materials, embedded reinforcements, damage mechanicsAbstract
The use of materials with anisotropic behaviour has grown in recent decades, driven by the pursuit of more efficient structural solutions. Fibre reinforcement stands out as an effective strategy to improve mechanical performance in directions of lower intrinsic strength. However, failure modelling in such materials remains a relevant challenge. This study employs the Extended Lumped Damage Mechanics (XLDM) approach to describe the physically nonlinear behaviour of fibre reinforced anisotropic materials. The method has proven robust in analysing structural degradation. An embedding technique is used to account for reinforcement effects without adding degrees of freedom. The formulation has been implemented in a computational code based on the finite element method with a position-based structure, allowing the consideration of geometric nonlinearity in damage evolution.
References
Amorim D.L.N.F., Picón R., Vieira C.S., e Flórez-López J. Intra-element versus inter-element crack propagation: the numerical extensometer approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46:360, 2024. http://doi.org/10.1007/s40430-024-04951-6.
Amorim D.L.N.F., Piedade Neto D., Proença S.P.B., e Flórez-López J. The extended lumped damage mechanics: A new formulation for the analysis of softening with fe size-independence. Mechanics Research Communications, 91:13–18, 2018. http://doi.org/10.1016/j.mechrescom.2018.05.001.
Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Simplified modeling of cracking in concrete: Application in tunnel linings. Engineering Structures, 70:23–35, 2014. http://doi.org/10.1016/j.engstruct.2014.03.031.
Avancini G., Franci A., Idelsohn S., e Sanches R.A.K. A particle-position-based finite element formulation for free-surface flows with topological changes. Computer Methods in Applied Mechanics and Engineering, 429:117118, 2024. http://doi.org/10.1016/j.cma.2024.117118.
Bazán J.A.V., Beck A.T., e Flórez-López J. Random fatigue of plane frames via lumped damage mechanics. Engineering Structures, 182:301–315, 2019. http://doi.org/10.1016/j.engstruct.2018.12.008.
Bonet J., Wood R.D., Mahaney J., e Heywood P. Finite element analysis of air supported membrane structures. Computer Methods in Applied Mechanics and Engineering, 190:579– 595, 2000. http://doi.org/10.1016/S0045-7825(99)00428-4.
Carvalho P.R.P., Coda H.B., e Sanches R.A.K. A large strain thermodynamically-based viscoelastic–viscoplastic model with application to finite element analysis of polytetrafluoroethylene (ptfe). European Journal of Mechanics - A/Solids, 97:104850, 2023. http://doi.org/10.1016/j.euromechsol.2022.104850.
Chaboche J.L. Continuous damage mechanics — a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64:233–247, 1981. http://doi.org/10.1016/0029-5493(81)90007-8.
Coda H.B., Bernardo C.C.L.C.G., e Paccola R.R. A fem formulation for the analysis of laminated and functionally graded hyperelastic beams with continuous transverse shear stresses. Composite Structures, 292:115606, 2022. http://doi.org/10.1016/j.compstruct.2022.115606.
Coda H.B. e Greco M. A simple fem formulation for large deflection 2d frame analysis based on position description. Computer Methods in Applied Mechanics and Engineering, 193:3541– 3557, 2004. http://doi.org/10.1016/J.CMA.2004.01.005.
Coelho K.O., Leonel E.D., e Flórez-López J. A methodology to evaluate corroded RC structures using a probabilistic damage approach. Computers and Concrete, 29:1–14, 2022. http://doi.org/10.12989/cac.2022.29.1.001.
Cunha R.N., Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Modeling the initiation and propagation of complex networks of cracks in reinforced concrete plates. Engineering Structures, 308:117993, 2024. http://doi.org/10.1016/j.engstruct.2024.117993.
de Borst R. Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 69:95–112, 2002. http://doi.org/10.1016/S0013-7944(01)00082-0.
de Borst R. e Chen L. Phase-field modelling of cohesive interface failure. International Journal for Numerical Methods in Engineering, 125:1–18, 2024. http://doi.org/10.1002/nme.7412.
Dourado N., Morel S., Moura M.F.S.F., Valentin G., e Morais J. Comparison of fracture properties of two wood species through cohesive crack simulations. Composites: Part A, 39:415– 427, 2008. http://doi.org/10.1016/j.compositesa.2007.08.025.
Dourado N., Moura M.F.S.F., Morel S., e Morais J. Wood fracture characterization under mode i loading using the three-point-bending test. experimental investigation of picea abies l. International Journal of Fracture, 194:1–9, 2015. http://doi.org/10.1007/s10704-015-0029-y.
Flórez-López J. Modelos de daño concentrados para la simulación numérica del colapso de pórticos planos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 9:123–139, 1993.
Hillerborg A., Modéer M., e Petersson P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773–781, 1976. http://doi.org/10.1016/0008-8846(76)90007-7.
Kaewkulchai G. e Williamson E.B. Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers & Structures, 82:639–651, 2004. http://doi.org/10.1016/j.compstruc.2003.12.001.
Lenz P. e Mahnken R. Non-local integral-type damage combined to mean-field homogenization methods for composites and its parallel implementation. Composite Structures, 314:116911, 2023. http://doi.org/10.1016/j.compstruct.2023.116911.
Nardi D.C. e Leonel E.D. An extended lumped damage mechanics igabem formulation for quasi-brittle material failure. Engineering Analysis with Boundary Elements, 169:105955, 2024. http://doi.org/10.1016/j.enganabound.2024.105955.
Peerlings R.H.J., de Borst R., BrekelmansW.A.M., e de Vree J.H.P. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39:3391–3403, 1996.
Picón R.A., Santos D.M., Teles D.V., Amorim D.L.N.F., Zhou X., Bai Y., Proença S.P.B., e Flórez-López J. Modeling of localization using nash variational formulations: The extended damage mechanics. Engineering Fracture Mechanics, 258:108083, 2021. http://doi.org/10.1016/j.engfracmech.2021.108083.
Proserpio D., Ambati M., Lorenzis L.D., e Kiendl J. A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures. Computer Methods in Applied Mechanics and Engineering, 372:113363, 2020. http://doi.org/10.1016/j.cma.2020.113363.
Sampaio M.S., Paccola R.R., e Coda H.B. Fully adherent fiber–matrix fem formulation for geometrically nonlinear 2d solid analysis. Finite Elements in Analysis and Design, 66:12– 25, 2013. http://doi.org/10.1016/J.FINEL.2012.10.003.
Santos F.L.G. e Sousa J.L.A.O. A viscous-cohesive model for concrete fracture in quasi-static loading rate. Engineering Fracture Mechanics, 228:106893, 2020. http://doi.org/10.1016/j.engfracmech.2020.106893.
Simo J.C. e Hughes T.J. Computational inelasticity. Springer Science & Business Media, 2006. Souza Neto E.A., Peric D., e Owen D.R.J. Computational methods for plasticity: theory and applications. John Wiley & Sons, 2008.
Sun B. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. Journal of Constructional Steel Research, 146:76–83, 2018. http://doi.org/10.1016/j.jcsr.2018.03.031.
Teles D.V.C., Amorim D.L.N.F., e Leonel E.D. The failure prediction of reinforced composite quasi-brittle structures by an improved version of the extended lumped damage approach. International Journal for Numerical Methods in Engineering, 126(3):e70006, 2025. http://doi.org/10.1002/nme.70006.
Teles D.V.C., Cunha R.N., Picón R.A., Amorim D.L., Bai Y., Proença S.P., e Flórez-López J. A new formulation of cracking in concrete structures based on lumped damage mechanics. Structural Engineering and Mechanics, 88:451–462, 2023. http://doi.org/10.12989/sem.2023.88.5.451.
Vanalli L., Paccola R.R., e Coda H.B. A simple way to introduce fibers into fem models. Communications in Numerical Methods in Engineering, 24:585–603, 2008. http://doi.org/10.1002/cnm.983.
Xue L., Ren X., e Freddi F. Analytical solution of a gradient-enhanced damage model for quasi-brittle failure. Applied Mathematical Modelling, 132:342–365, 2024. http://doi.org/10.1016/j.apm.2024.04.053.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

