Análise de Falhas em Materiais Anisotrópicos com Fibras Embutidas Utilizando a Mecânica do Dano Concentrado Expandida
DOI:
https://doi.org/10.70567/mc.v42.ocsid8366Palabras clave:
Materiais anisotrópicos, reforços embutidos, mecânica do danoResumen
O uso de materiais com comportamento anisotrópico tem se intensificado nas últimas décadas, impulsionado pela demanda por soluções estruturais mais eficientes. Nesse contexto, o reforço com fibras configura-se como uma estratégia eficaz para aprimorar o desempenho mecânico em direções com menor resistência intrínseca. A modelagem de falhas desses materiais, entretanto, ainda permanece como um desafio significativo. Neste trabalho, emprega-se a Mecânica do Dano Concentrado Expandida (XLDM) para descrever o comportamento fisicamente não linear de materiais anisotrópicos. Essa abordagem, fundamentada em conceitos da mecânica da fratura e do dano contínuo, tem se mostrado robusta na análise de processos de degradação estrutural. Além disso, adota-se uma técnica de embutimento para representar adequadamente o efeito dos reforços sem introduzir novos graus de liberdade ao problema. Por fim, a formulação foi implementada em um código computacional fundamentado no método dos elementos finitos com estrutura baseada em posições, o que permite a consideração dos efeitos associados à não linearidade geométrica na evolução do dano.
Citas
Amorim D.L.N.F., Picón R., Vieira C.S., e Flórez-López J. Intra-element versus inter-element crack propagation: the numerical extensometer approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46:360, 2024. http://doi.org/10.1007/s40430-024-04951-6.
Amorim D.L.N.F., Piedade Neto D., Proença S.P.B., e Flórez-López J. The extended lumped damage mechanics: A new formulation for the analysis of softening with fe size-independence. Mechanics Research Communications, 91:13–18, 2018. http://doi.org/10.1016/j.mechrescom.2018.05.001.
Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Simplified modeling of cracking in concrete: Application in tunnel linings. Engineering Structures, 70:23–35, 2014. http://doi.org/10.1016/j.engstruct.2014.03.031.
Avancini G., Franci A., Idelsohn S., e Sanches R.A.K. A particle-position-based finite element formulation for free-surface flows with topological changes. Computer Methods in Applied Mechanics and Engineering, 429:117118, 2024. http://doi.org/10.1016/j.cma.2024.117118.
Bazán J.A.V., Beck A.T., e Flórez-López J. Random fatigue of plane frames via lumped damage mechanics. Engineering Structures, 182:301–315, 2019. http://doi.org/10.1016/j.engstruct.2018.12.008.
Bonet J., Wood R.D., Mahaney J., e Heywood P. Finite element analysis of air supported membrane structures. Computer Methods in Applied Mechanics and Engineering, 190:579– 595, 2000. http://doi.org/10.1016/S0045-7825(99)00428-4.
Carvalho P.R.P., Coda H.B., e Sanches R.A.K. A large strain thermodynamically-based viscoelastic–viscoplastic model with application to finite element analysis of polytetrafluoroethylene (ptfe). European Journal of Mechanics - A/Solids, 97:104850, 2023. http://doi.org/10.1016/j.euromechsol.2022.104850.
Chaboche J.L. Continuous damage mechanics — a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64:233–247, 1981. http://doi.org/10.1016/0029-5493(81)90007-8.
Coda H.B., Bernardo C.C.L.C.G., e Paccola R.R. A fem formulation for the analysis of laminated and functionally graded hyperelastic beams with continuous transverse shear stresses. Composite Structures, 292:115606, 2022. http://doi.org/10.1016/j.compstruct.2022.115606.
Coda H.B. e Greco M. A simple fem formulation for large deflection 2d frame analysis based on position description. Computer Methods in Applied Mechanics and Engineering, 193:3541– 3557, 2004. http://doi.org/10.1016/J.CMA.2004.01.005.
Coelho K.O., Leonel E.D., e Flórez-López J. A methodology to evaluate corroded RC structures using a probabilistic damage approach. Computers and Concrete, 29:1–14, 2022. http://doi.org/10.12989/cac.2022.29.1.001.
Cunha R.N., Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Modeling the initiation and propagation of complex networks of cracks in reinforced concrete plates. Engineering Structures, 308:117993, 2024. http://doi.org/10.1016/j.engstruct.2024.117993.
de Borst R. Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 69:95–112, 2002. http://doi.org/10.1016/S0013-7944(01)00082-0.
de Borst R. e Chen L. Phase-field modelling of cohesive interface failure. International Journal for Numerical Methods in Engineering, 125:1–18, 2024. http://doi.org/10.1002/nme.7412.
Dourado N., Morel S., Moura M.F.S.F., Valentin G., e Morais J. Comparison of fracture properties of two wood species through cohesive crack simulations. Composites: Part A, 39:415– 427, 2008. http://doi.org/10.1016/j.compositesa.2007.08.025.
Dourado N., Moura M.F.S.F., Morel S., e Morais J. Wood fracture characterization under mode i loading using the three-point-bending test. experimental investigation of picea abies l. International Journal of Fracture, 194:1–9, 2015. http://doi.org/10.1007/s10704-015-0029-y.
Flórez-López J. Modelos de daño concentrados para la simulación numérica del colapso de pórticos planos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 9:123–139, 1993.
Hillerborg A., Modéer M., e Petersson P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773–781, 1976. http://doi.org/10.1016/0008-8846(76)90007-7.
Kaewkulchai G. e Williamson E.B. Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers & Structures, 82:639–651, 2004. http://doi.org/10.1016/j.compstruc.2003.12.001.
Lenz P. e Mahnken R. Non-local integral-type damage combined to mean-field homogenization methods for composites and its parallel implementation. Composite Structures, 314:116911, 2023. http://doi.org/10.1016/j.compstruct.2023.116911.
Nardi D.C. e Leonel E.D. An extended lumped damage mechanics igabem formulation for quasi-brittle material failure. Engineering Analysis with Boundary Elements, 169:105955, 2024. http://doi.org/10.1016/j.enganabound.2024.105955.
Peerlings R.H.J., de Borst R., BrekelmansW.A.M., e de Vree J.H.P. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39:3391–3403, 1996.
Picón R.A., Santos D.M., Teles D.V., Amorim D.L.N.F., Zhou X., Bai Y., Proença S.P.B., e Flórez-López J. Modeling of localization using nash variational formulations: The extended damage mechanics. Engineering Fracture Mechanics, 258:108083, 2021. http://doi.org/10.1016/j.engfracmech.2021.108083.
Proserpio D., Ambati M., Lorenzis L.D., e Kiendl J. A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures. Computer Methods in Applied Mechanics and Engineering, 372:113363, 2020. http://doi.org/10.1016/j.cma.2020.113363.
Sampaio M.S., Paccola R.R., e Coda H.B. Fully adherent fiber–matrix fem formulation for geometrically nonlinear 2d solid analysis. Finite Elements in Analysis and Design, 66:12– 25, 2013. http://doi.org/10.1016/J.FINEL.2012.10.003.
Santos F.L.G. e Sousa J.L.A.O. A viscous-cohesive model for concrete fracture in quasi-static loading rate. Engineering Fracture Mechanics, 228:106893, 2020. http://doi.org/10.1016/j.engfracmech.2020.106893.
Simo J.C. e Hughes T.J. Computational inelasticity. Springer Science & Business Media, 2006. Souza Neto E.A., Peric D., e Owen D.R.J. Computational methods for plasticity: theory and applications. John Wiley & Sons, 2008.
Sun B. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. Journal of Constructional Steel Research, 146:76–83, 2018. http://doi.org/10.1016/j.jcsr.2018.03.031.
Teles D.V.C., Amorim D.L.N.F., e Leonel E.D. The failure prediction of reinforced composite quasi-brittle structures by an improved version of the extended lumped damage approach. International Journal for Numerical Methods in Engineering, 126(3):e70006, 2025. http://doi.org/10.1002/nme.70006.
Teles D.V.C., Cunha R.N., Picón R.A., Amorim D.L., Bai Y., Proença S.P., e Flórez-López J. A new formulation of cracking in concrete structures based on lumped damage mechanics. Structural Engineering and Mechanics, 88:451–462, 2023. http://doi.org/10.12989/sem.2023.88.5.451.
Vanalli L., Paccola R.R., e Coda H.B. A simple way to introduce fibers into fem models. Communications in Numerical Methods in Engineering, 24:585–603, 2008. http://doi.org/10.1002/cnm.983.
Xue L., Ren X., e Freddi F. Analytical solution of a gradient-enhanced damage model for quasi-brittle failure. Applied Mathematical Modelling, 132:342–365, 2024. http://doi.org/10.1016/j.apm.2024.04.053.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

