Análise de Falhas em Materiais Anisotrópicos com Fibras Embutidas Utilizando a Mecânica do Dano Concentrado Expandida

Autores

  • Daniel Victor da Cunha Teles Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia de Estruturas. São Carlos-SP, Brasil. https://orcid.org/0000-0002-9206-6351
  • David Leonardo Nascimento de Figueiredo Amorim Universidade Federal de Sergipe, Laboratório de Modelagem Matemática em Engenharia Civil. São Cristóvão-SE, Brasil. & Universidade Federal de Alagoas, Programa de Pós-Graduação em Engenharia Civil. Maceió-AL, Brasil. https://orcid.org/0000-0002-9233-3114
  • Edson Denner Leonel Universidade de São Paulo, Escola de Engenharia de São Carlos, Departamento de Engenharia de Estruturas. São Carlos-SP, Brasil. https://orcid.org/0000-0002-7842-0334

DOI:

https://doi.org/10.70567/mc.v42.ocsid8366

Palavras-chave:

Materiais anisotrópicos, reforços embutidos, mecânica do dano

Resumo

O uso de materiais com comportamento anisotrópico tem se intensificado nas últimas décadas, impulsionado pela demanda por soluções estruturais mais eficientes. Nesse contexto, o reforço com fibras configura-se como uma estratégia eficaz para aprimorar o desempenho mecânico em direções com menor resistência intrínseca. A modelagem de falhas desses materiais, entretanto, ainda permanece como um desafio significativo. Neste trabalho, emprega-se a Mecânica do Dano Concentrado Expandida (XLDM) para descrever o comportamento fisicamente não linear de materiais anisotrópicos. Essa abordagem, fundamentada em conceitos da mecânica da fratura e do dano contínuo, tem se mostrado robusta na análise de processos de degradação estrutural. Além disso, adota-se uma técnica de embutimento para representar adequadamente o efeito dos reforços sem introduzir novos graus de liberdade ao problema. Por fim, a formulação foi implementada em um código computacional fundamentado no método dos elementos finitos com estrutura baseada em posições, o que permite a consideração dos efeitos associados à não linearidade geométrica na evolução do dano.

Referências

Amorim D.L.N.F., Picón R., Vieira C.S., e Flórez-López J. Intra-element versus inter-element crack propagation: the numerical extensometer approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46:360, 2024. http://doi.org/10.1007/s40430-024-04951-6.

Amorim D.L.N.F., Piedade Neto D., Proença S.P.B., e Flórez-López J. The extended lumped damage mechanics: A new formulation for the analysis of softening with fe size-independence. Mechanics Research Communications, 91:13–18, 2018. http://doi.org/10.1016/j.mechrescom.2018.05.001.

Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Simplified modeling of cracking in concrete: Application in tunnel linings. Engineering Structures, 70:23–35, 2014. http://doi.org/10.1016/j.engstruct.2014.03.031.

Avancini G., Franci A., Idelsohn S., e Sanches R.A.K. A particle-position-based finite element formulation for free-surface flows with topological changes. Computer Methods in Applied Mechanics and Engineering, 429:117118, 2024. http://doi.org/10.1016/j.cma.2024.117118.

Bazán J.A.V., Beck A.T., e Flórez-López J. Random fatigue of plane frames via lumped damage mechanics. Engineering Structures, 182:301–315, 2019. http://doi.org/10.1016/j.engstruct.2018.12.008.

Bonet J., Wood R.D., Mahaney J., e Heywood P. Finite element analysis of air supported membrane structures. Computer Methods in Applied Mechanics and Engineering, 190:579– 595, 2000. http://doi.org/10.1016/S0045-7825(99)00428-4.

Carvalho P.R.P., Coda H.B., e Sanches R.A.K. A large strain thermodynamically-based viscoelastic–viscoplastic model with application to finite element analysis of polytetrafluoroethylene (ptfe). European Journal of Mechanics - A/Solids, 97:104850, 2023. http://doi.org/10.1016/j.euromechsol.2022.104850.

Chaboche J.L. Continuous damage mechanics — a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64:233–247, 1981. http://doi.org/10.1016/0029-5493(81)90007-8.

Coda H.B., Bernardo C.C.L.C.G., e Paccola R.R. A fem formulation for the analysis of laminated and functionally graded hyperelastic beams with continuous transverse shear stresses. Composite Structures, 292:115606, 2022. http://doi.org/10.1016/j.compstruct.2022.115606.

Coda H.B. e Greco M. A simple fem formulation for large deflection 2d frame analysis based on position description. Computer Methods in Applied Mechanics and Engineering, 193:3541– 3557, 2004. http://doi.org/10.1016/J.CMA.2004.01.005.

Coelho K.O., Leonel E.D., e Flórez-López J. A methodology to evaluate corroded RC structures using a probabilistic damage approach. Computers and Concrete, 29:1–14, 2022. http://doi.org/10.12989/cac.2022.29.1.001.

Cunha R.N., Amorim D.L.N.F., Proença S.P.B., e Flórez-López J. Modeling the initiation and propagation of complex networks of cracks in reinforced concrete plates. Engineering Structures, 308:117993, 2024. http://doi.org/10.1016/j.engstruct.2024.117993.

de Borst R. Fracture in quasi-brittle materials: a review of continuum damage-based approaches. Engineering Fracture Mechanics, 69:95–112, 2002. http://doi.org/10.1016/S0013-7944(01)00082-0.

de Borst R. e Chen L. Phase-field modelling of cohesive interface failure. International Journal for Numerical Methods in Engineering, 125:1–18, 2024. http://doi.org/10.1002/nme.7412.

Dourado N., Morel S., Moura M.F.S.F., Valentin G., e Morais J. Comparison of fracture properties of two wood species through cohesive crack simulations. Composites: Part A, 39:415– 427, 2008. http://doi.org/10.1016/j.compositesa.2007.08.025.

Dourado N., Moura M.F.S.F., Morel S., e Morais J. Wood fracture characterization under mode i loading using the three-point-bending test. experimental investigation of picea abies l. International Journal of Fracture, 194:1–9, 2015. http://doi.org/10.1007/s10704-015-0029-y.

Flórez-López J. Modelos de daño concentrados para la simulación numérica del colapso de pórticos planos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 9:123–139, 1993.

Hillerborg A., Modéer M., e Petersson P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773–781, 1976. http://doi.org/10.1016/0008-8846(76)90007-7.

Kaewkulchai G. e Williamson E.B. Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers & Structures, 82:639–651, 2004. http://doi.org/10.1016/j.compstruc.2003.12.001.

Lenz P. e Mahnken R. Non-local integral-type damage combined to mean-field homogenization methods for composites and its parallel implementation. Composite Structures, 314:116911, 2023. http://doi.org/10.1016/j.compstruct.2023.116911.

Nardi D.C. e Leonel E.D. An extended lumped damage mechanics igabem formulation for quasi-brittle material failure. Engineering Analysis with Boundary Elements, 169:105955, 2024. http://doi.org/10.1016/j.enganabound.2024.105955.

Peerlings R.H.J., de Borst R., BrekelmansW.A.M., e de Vree J.H.P. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39:3391–3403, 1996.

Picón R.A., Santos D.M., Teles D.V., Amorim D.L.N.F., Zhou X., Bai Y., Proença S.P.B., e Flórez-López J. Modeling of localization using nash variational formulations: The extended damage mechanics. Engineering Fracture Mechanics, 258:108083, 2021. http://doi.org/10.1016/j.engfracmech.2021.108083.

Proserpio D., Ambati M., Lorenzis L.D., e Kiendl J. A framework for efficient isogeometric computations of phase-field brittle fracture in multipatch shell structures. Computer Methods in Applied Mechanics and Engineering, 372:113363, 2020. http://doi.org/10.1016/j.cma.2020.113363.

Sampaio M.S., Paccola R.R., e Coda H.B. Fully adherent fiber–matrix fem formulation for geometrically nonlinear 2d solid analysis. Finite Elements in Analysis and Design, 66:12– 25, 2013. http://doi.org/10.1016/J.FINEL.2012.10.003.

Santos F.L.G. e Sousa J.L.A.O. A viscous-cohesive model for concrete fracture in quasi-static loading rate. Engineering Fracture Mechanics, 228:106893, 2020. http://doi.org/10.1016/j.engfracmech.2020.106893.

Simo J.C. e Hughes T.J. Computational inelasticity. Springer Science & Business Media, 2006. Souza Neto E.A., Peric D., e Owen D.R.J. Computational methods for plasticity: theory and applications. John Wiley & Sons, 2008.

Sun B. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue. Journal of Constructional Steel Research, 146:76–83, 2018. http://doi.org/10.1016/j.jcsr.2018.03.031.

Teles D.V.C., Amorim D.L.N.F., e Leonel E.D. The failure prediction of reinforced composite quasi-brittle structures by an improved version of the extended lumped damage approach. International Journal for Numerical Methods in Engineering, 126(3):e70006, 2025. http://doi.org/10.1002/nme.70006.

Teles D.V.C., Cunha R.N., Picón R.A., Amorim D.L., Bai Y., Proença S.P., e Flórez-López J. A new formulation of cracking in concrete structures based on lumped damage mechanics. Structural Engineering and Mechanics, 88:451–462, 2023. http://doi.org/10.12989/sem.2023.88.5.451.

Vanalli L., Paccola R.R., e Coda H.B. A simple way to introduce fibers into fem models. Communications in Numerical Methods in Engineering, 24:585–603, 2008. http://doi.org/10.1002/cnm.983.

Xue L., Ren X., e Freddi F. Analytical solution of a gradient-enhanced damage model for quasi-brittle failure. Applied Mathematical Modelling, 132:342–365, 2024. http://doi.org/10.1016/j.apm.2024.04.053.

Downloads

Publicado

2025-12-03

Edição

Seção

Artigos completos da conferência MECOM 2025