On Time-Dependent Lagrangian Systems over Lie Groups and Variational Integrators
DOI:
https://doi.org/10.70567/mc.v42.ocsid8576Keywords:
Lagrangian systems, Lie groups, Time-dependent Lagrangian systems, Variational integratorsAbstract
Time-dependent Lagrangian mechanical systems are of great interest in various branches of engineering and physics. In particular, in robotics, many non-autonomous, that is time-dependent Lagrangian systems, are considered. In this work, we present the dynamics of such systems on Lie groups, considering both continuous and discrete time variables. Within this framework, we address the problem of integrating their equations of motion using discrete variational techniques. We illustrate the approach with simple examples whose configuration space is the Euclidean group, and propose their discrete counterparts. We also study an example on the group of spatial rotations, and finally discuss future research directions aimed at developing variational integrators for more general systems.
References
Anahory A., Colombo L.J., de Leon M., Marrero J.C., de Diego D.M., y Padrón E. Reduction by symmetries of contact mechanical systems on lie groups. SIAM Journal on Applied Algebra and Geometry, 8(4):821–845, 2024. http://doi.org/10.1137/23M1616935.
Arnold M., Cardona A., y Brüls O. A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems, páginas 91–158. Springer International Publishing, Cham, 2016. ISBN 978-3-319-31879-0. http://doi.org/10.1007/978-3-319-31879-0_3.
Bernstein D., McClamroch N., y Bloch A. Development of air spindle and triaxial air bearing testbeds for spacecraft dynamics and control experiments. En Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), volumen 5, páginas 3967–3972 vol.5. 2001. http://doi.org/10.1109/ACC.2001.946287.
Brüls O., Cardona A., y Arnold M. Lie group generalized-a time integration of constrained flexible multibody systems. Mechanism and Machine Theory, 48:121–137, 2012. ISSN 0094-114X. http://doi.org/https://doi.org/10.1016/j.mechmachtheory.2011.07.017.
Colombo L., Eyrea Irazú M.E., Sánchez M.D., y Zuccalli M. Time-dependent lagrangian systems on lie groups. Matemática Aplicada, Computacional e Industrial, 10:238–241, 2025.
Colombo L., Fernández M.G., y Martín de Diego D. Variational integrators for non-autonomous lagrangian systems. Journal of Computational and Applied Mathematics, 424:114966, 2023. ISSN 0377-0427. http://doi.org/https://doi.org/10.1016/j.cam.2022.114966.
Hairer E., Lubich C., y Wanner G. Geometric Numerical Integration, volumen 31 de Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd edición, 2006. ISBN 3-540-30663-3; 978-3-540-30663-4. Structure-preserving algorithms for ordinary differential equations.
Marsden J.E. y West M. Discrete mechanics and variational integrators. Acta Numerica, 10:357–514, 2001. http://doi.org/10.1017/S096249290100006X.
Shen J., Sanyal A., y McClamroch N. Asymptotic stability of rigid body attitude systems. En 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), volumen 1, páginas 544–549 Vol.1. 2003. http://doi.org/10.1109/CDC.2003.1272620.
Vivek V., Martin de Diego D., y Banavar R. Numerical integrators for mechanical systems on lie groups. ArXiv, 2025. http://doi.org/https://doi.org/10.48550/arXiv.2505.12103.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

