Data-driven Bayesian Deconvolution of Continuous Distributions of Relaxation Times

Authors

  • Ligia Ciocci Brazzano Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina. https://orcid.org/0000-0002-1558-9300
  • Leonardo J. Pellizza Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) & Institute for Astronomy and Space Physics (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina.
  • Claudia L. Matteo Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas. Ciudad Autónoma de Buenos Aires, Argentina.
  • Patricio A. Sorichetti Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas. Ciudad Autónoma de Buenos Aires, Argentina.
  • Martín G. González Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina.
  • Julián Corach Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas & Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina.
  • Eduardo O. Acosta Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Física, Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas. Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8313

Keywords:

Bayesian deconvolution, Data-driven, Mechanical relaxation spectrum, Linear viscoelasticity, Small amplitude oscillatory shear, Uncertainties

Abstract

The knowledge of mechanical properties of materials is based on a precise analysis of their relaxation spectra. The development of methods to deconvolve spectra from measured data, and the assessment of their reliability, is therefore of paramount importance. We present a novel Bayesian deconvolution method based on a physically grounded parameterization of the spectra. We use a Metropolis-Hastings Markov-chain Monte Carlo fitting algorithm, with a full posterior analysis to obtain the best-fitting spectrum and its uncertainties. We test its performance on simulated data, finding that it is unbiased, reliable, and gives precise results even under strong noise.

References

Ciocci Brazzano L., Pellizza L.J., Matteo C.L., and Sorichetti P.A. A Bayesian method for analysing relaxation spectra. Computer Physics Communications, 198:22–30, 2016. http://doi.org/https://doi.org/10.1016/j.cpc.2015.08.033.

Douna V.M., Pellizza L.J., Mirabel I.F., and Pedrosa S.E. Metallicity dependence of high-mass X-ray binary populations. Astronomy & Astrophysics, 579:A44, 2015. http://doi.org/10.1051/0004-6361/201525617.

Freund J.B. and Ewoldt R.H. Quantitative rheological model selection: Good fits versus credible models using Bayesian inference. Journal of Rheology, 59(3):667–701, 2015. http://doi.org/10.1122/1.4915299.

Frodesen A.G., Skjeggestad O., and Tofte H. Probability and Statistics in Particle Physics. Universitetsforlaget, Bergen, Norway, 1979.

Gregory P.C. Bayesian logical data analysis for the physical sciences: a comparative approach with Mathematica support. Cambridge University Press, 2005. http://doi.org/https://doi.org/10.1017/CBO9780511791277.

Li S.W., Park H.E., and Dealy J.M. Evaluation of molecular linear viscoelastic models for polydisperse h polybutadienes. Journal of Rheology, 55(6):1341–1373, 2011.

Martinetti L., Soulages J.M., and Ewoldt R.H. Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear. Journal of Rheology, 62(5):1271–1298, 2018. http://doi.org/10.1122/1.5025080.

McDougall I., Orbey N., and Dealy J.M. Inferring meaningful relaxation spectra from experimental data. Journal of Rheology, 58(3):779–797, 2014. http://doi.org/10.1122/1.4870967.

Stadler F.J. On the usefulness of rheological spectra – a critical discussion. Rheologica Acta, 1(52):85–89, 2013.

Tschoegl N.W. The phenomenological theory of linear viscoelastic behavior. Springer Verlag, 1989. http://doi.org/10.1007/978-3-642-73602-5.

Winter H. Analysis of dynamic mechanical data: Inversion into a relaxation time spectrum and consistency check. J. Non-Newtonian Fluid Mech., 68(2-3):225–239, 1997. http://doi.org/https://doi.org/10.1016/S0377-0257(96)01512-1.

Downloads

Published

2025-12-03

Most read articles by the same author(s)