Data-driven Bayesian Deconvolution of Continuous Distributions of Relaxation Times
DOI:
https://doi.org/10.70567/mc.v42.ocsid8313Palavras-chave:
Bayesian deconvolution, Data-driven, Mechanical relaxation spectrum, Linear viscoelasticity, Small amplitude oscillatory shear, UncertaintiesResumo
The knowledge of mechanical properties of materials is based on a precise analysis of their relaxation spectra. The development of methods to deconvolve spectra from measured data, and the assessment of their reliability, is therefore of paramount importance. We present a novel Bayesian deconvolution method based on a physically grounded parameterization of the spectra. We use a Metropolis-Hastings Markov-chain Monte Carlo fitting algorithm, with a full posterior analysis to obtain the best-fitting spectrum and its uncertainties. We test its performance on simulated data, finding that it is unbiased, reliable, and gives precise results even under strong noise.
Referências
Ciocci Brazzano L., Pellizza L.J., Matteo C.L., and Sorichetti P.A. A Bayesian method for analysing relaxation spectra. Computer Physics Communications, 198:22–30, 2016. http://doi.org/https://doi.org/10.1016/j.cpc.2015.08.033.
Douna V.M., Pellizza L.J., Mirabel I.F., and Pedrosa S.E. Metallicity dependence of high-mass X-ray binary populations. Astronomy & Astrophysics, 579:A44, 2015. http://doi.org/10.1051/0004-6361/201525617.
Freund J.B. and Ewoldt R.H. Quantitative rheological model selection: Good fits versus credible models using Bayesian inference. Journal of Rheology, 59(3):667–701, 2015. http://doi.org/10.1122/1.4915299.
Frodesen A.G., Skjeggestad O., and Tofte H. Probability and Statistics in Particle Physics. Universitetsforlaget, Bergen, Norway, 1979.
Gregory P.C. Bayesian logical data analysis for the physical sciences: a comparative approach with Mathematica support. Cambridge University Press, 2005. http://doi.org/https://doi.org/10.1017/CBO9780511791277.
Li S.W., Park H.E., and Dealy J.M. Evaluation of molecular linear viscoelastic models for polydisperse h polybutadienes. Journal of Rheology, 55(6):1341–1373, 2011.
Martinetti L., Soulages J.M., and Ewoldt R.H. Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear. Journal of Rheology, 62(5):1271–1298, 2018. http://doi.org/10.1122/1.5025080.
McDougall I., Orbey N., and Dealy J.M. Inferring meaningful relaxation spectra from experimental data. Journal of Rheology, 58(3):779–797, 2014. http://doi.org/10.1122/1.4870967.
Stadler F.J. On the usefulness of rheological spectra – a critical discussion. Rheologica Acta, 1(52):85–89, 2013.
Tschoegl N.W. The phenomenological theory of linear viscoelastic behavior. Springer Verlag, 1989. http://doi.org/10.1007/978-3-642-73602-5.
Winter H. Analysis of dynamic mechanical data: Inversion into a relaxation time spectrum and consistency check. J. Non-Newtonian Fluid Mech., 68(2-3):225–239, 1997. http://doi.org/https://doi.org/10.1016/S0377-0257(96)01512-1.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Associação Argentina de Mecânica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.

