Data-driven Bayesian Deconvolution of Continuous Distributions of Relaxation Times
DOI:
https://doi.org/10.70567/mc.v42.ocsid8313Palabras clave:
Bayesian deconvolution, Data-driven, Mechanical relaxation spectrum, Linear viscoelasticity, Small amplitude oscillatory shear, UncertaintiesResumen
The knowledge of mechanical properties of materials is based on a precise analysis of their relaxation spectra. The development of methods to deconvolve spectra from measured data, and the assessment of their reliability, is therefore of paramount importance. We present a novel Bayesian deconvolution method based on a physically grounded parameterization of the spectra. We use a Metropolis-Hastings Markov-chain Monte Carlo fitting algorithm, with a full posterior analysis to obtain the best-fitting spectrum and its uncertainties. We test its performance on simulated data, finding that it is unbiased, reliable, and gives precise results even under strong noise.
Citas
Ciocci Brazzano L., Pellizza L.J., Matteo C.L., and Sorichetti P.A. A Bayesian method for analysing relaxation spectra. Computer Physics Communications, 198:22–30, 2016. http://doi.org/https://doi.org/10.1016/j.cpc.2015.08.033.
Douna V.M., Pellizza L.J., Mirabel I.F., and Pedrosa S.E. Metallicity dependence of high-mass X-ray binary populations. Astronomy & Astrophysics, 579:A44, 2015. http://doi.org/10.1051/0004-6361/201525617.
Freund J.B. and Ewoldt R.H. Quantitative rheological model selection: Good fits versus credible models using Bayesian inference. Journal of Rheology, 59(3):667–701, 2015. http://doi.org/10.1122/1.4915299.
Frodesen A.G., Skjeggestad O., and Tofte H. Probability and Statistics in Particle Physics. Universitetsforlaget, Bergen, Norway, 1979.
Gregory P.C. Bayesian logical data analysis for the physical sciences: a comparative approach with Mathematica support. Cambridge University Press, 2005. http://doi.org/https://doi.org/10.1017/CBO9780511791277.
Li S.W., Park H.E., and Dealy J.M. Evaluation of molecular linear viscoelastic models for polydisperse h polybutadienes. Journal of Rheology, 55(6):1341–1373, 2011.
Martinetti L., Soulages J.M., and Ewoldt R.H. Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear. Journal of Rheology, 62(5):1271–1298, 2018. http://doi.org/10.1122/1.5025080.
McDougall I., Orbey N., and Dealy J.M. Inferring meaningful relaxation spectra from experimental data. Journal of Rheology, 58(3):779–797, 2014. http://doi.org/10.1122/1.4870967.
Stadler F.J. On the usefulness of rheological spectra – a critical discussion. Rheologica Acta, 1(52):85–89, 2013.
Tschoegl N.W. The phenomenological theory of linear viscoelastic behavior. Springer Verlag, 1989. http://doi.org/10.1007/978-3-642-73602-5.
Winter H. Analysis of dynamic mechanical data: Inversion into a relaxation time spectrum and consistency check. J. Non-Newtonian Fluid Mech., 68(2-3):225–239, 1997. http://doi.org/https://doi.org/10.1016/S0377-0257(96)01512-1.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

