CFD Simulation of Head Loss in Channels with Sudden Change of Section: Comparison with Literature Correlations

Authors

  • Agustin Kourani Comisión Nacional de Energía Atómica (CNEA). Ciudad Autónoma de Buenos Aires, Argentina.
  • Darío Godino Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Santiago Corzo Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.
  • Nicolás Giménez Comisión Nacional de Energía Atómica (CNEA). Ciudad Autónoma de Buenos Aires, Argentina.
  • Emanuel Giménez Comisión Nacional de Energía Atómica (CNEA). Ciudad Autónoma de Buenos Aires, Argentina.
  • Damián Ramajo Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL). Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i6.34

Keywords:

CFD, contractions and expansions, head loss, empirical correlations

Abstract

Empirical correlations for determining head loss in piping systems have been crucial in the design of complex installations, provided the validity ranges (Reynolds number, temperature, pressure, etc.) are respected. However, these ranges are often poorly defined. It is also common to assume that the total head loss is the sum of individual losses, even though these fittings are tested under conditions of fully developed flow. This study employs computational fluid dynamics (CFD) simulations to evaluate head loss in channels with contractions and expansions of different aspect ratios (L/H). The results show excellent agreement between CFD and correlations for isolated contractions and expansions. Additionally, it is observed that the total head loss is not simply the sum of isolated coefficients unless the L/H ratio is high, allowing the flow to redevelop before reaching the next area change.

References

Faure T.M.; Adrianos P.L.F. y Pastur L. Visualizations of the flow inside an open cavity at medium range reynolds numbers. Exp. Fluids, 42:169-184, 2007. https://doi.org/10.1007/s00348-006-0188-8

Idelchik I. Handbook of Hydraulic Resistance. Begell House Inc., 2006.

Menter F. Zonal two equation k-w turbulence models for aerodynamic flows. AIAA, páginas 1993-2906, 1993. https://doi.org/10.2514/6.1993-2906

Metzger D.E.; Bunker R. y Chyu M. Cavity heat transfer on a transverse grooved wall in a narrow flow channel. Heat Transfer journal, 111:73-79, 1982. https://doi.org/10.1115/1.3250661

Ozsoy E.; Rambaud P.S.A. y Riethmuller M. Vortex characteristics in laminar cavity flow at very low mach number. Exp. Fluids, 38:133-145, 2005. https://doi.org/10.1007/s00348-004-0845-8

Shankar P.N. y Deshpande M.D. Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech., 32:93-136, 2000. https://doi.org/10.1146/annurev.fluid.32.1.93

Sinha S.N.; Gupta A. y Oberai M. Laminar separating flow over back-steps and cavities part ii: Cavities. AIAA journal, 20:370-375, 1982. https://doi.org/10.2514/3.7918

White F. Fluid Mechanics. McGraw-Hill, 2003.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024