Analysis of the Influence of Biomimetic Scaffolds Making Technique in Uniaxial Testing Results Using Computational Modeling

Authors

  • Gustavo E. Carr Universidad Nacional de Mar del Plata, Grupo de Ingeniería Asistida por Computación (GIAC) & INTEMA (CONICET - Universidad Nacional de Mar del Plata), Grupo Mecánica de Materiales & Universidad Tecnológica Nacional, Facultad Regional Mar del Plata, Grupo HidroSim & CONICET. Mar del Plata, Argentina.
  • Nahuel M. Jáuregui Universidad Nacional de Mar del Plata, Grupo de Ingeniería Asistida por Computación (GIAC) & INTEMA (CONICET - Universidad Nacional de Mar del Plata), Grupo Polímeros Biomédicos & CONICET. Mar del Plata, Argentina.
  • Nicolás Antonelli Universidad Nacional de Mar del Plata, Grupo de Ingeniería Asistida por Computación (GIAC) & Universidad Tecnológica Nacional, Facultad Regional Mar del Plata, Grupo HidroSim. Mar del Plata, Argentina.
  • Florencia Montini Ballarín INTEMA (CONICET - Universidad Nacional de Mar del Plata), Grupo Polímeros Biomédicos & CONICET. Mar del Plata, Argentina.
  • Santiago A. Urquiza Universidad Nacional de Mar del Plata, Grupo de Ingeniería Asistida por Computación (GIAC) & Universidad Tecnológica Nacional, Facultad Regional Mar del Plata, Grupo HidroSim. Mar del Plata, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8455

Keywords:

Automatic parametric modeling, biomimetic nanofibrous scaffolds, Finite Element Method, In-silico testing, Hyperelasticity

Abstract

This work focuses on the development of artificial scaffolds for living tissue replacement. Geometric variations from the original design are analyzed using the geometries of 3D printed physical specimens of poly-caprolactone (PCL) polymer. Computational modeling of the uniaxial tests is performed using the geometries obtained from physical specimens and comparing them with the results of ideal geometries. The results obtained are presented, analyzed, and discussed in relation to the variables studied.

References

Arinstein A. Confinement mechanism of electrospun polymer nanofiber reinforcement. Journal of Polymer Science Part B: Polymer Physics, 51(9):756–763, 2013. https://doi.org/10.1002/polb.23246.

Baker S.R., Banerjee S., Bonin K., y Guthold M. Determining the mechanical properties of electrospun poly-e-caprolactone (pcl) nanofibers using afm and a novel fiber anchoring technique. Materials Science and Engineering: C, 59:203–212, 2016. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2015.09.102.

Caballero D.E., Montini-Ballarin F., Gimenez J.M., Biocca N., Rull N., Frontini P., y Urquiza S.A. Reduced kinematic multiscale model for tissue engineering electrospun scaffolds. Mechanics of Materials, 166:104214, 2022. ISSN 0167-6636. https://doi.org/10.1016/j.mechmat.2022.104214.

Carr G.E., Jáuregui N.M., Antonelli N., Ballarín F.M., y Urquiza S.A. Diseño in-sílico de scaffolds nanofibrosos biomiméticos 3d para ingeniería de tejidos: desarrollo de geometrías paramétricas, mallado y cálculo automatizado. Mecánica Computacional, XLI:903–911, 2024. ISSN 2591-3522. https://doi.org/10.70567/mc.v41i17.89.

Domaschke S., Morel A., Kaufmann R., Hofmann J., Rossi R.M., Mazza E., Fortunato G., y Ehret A.E. Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties. Journal of the Mechanical Behavior of Biomedical Materials, 104:103634, 2020. ISSN 1751-6161. https://doi.org/10.1016/j.jmbbm.2020.103634.

Fasshauer G. Meshfree Approximation Methods with MATLAB. Interdisciplinary mathematical sciences. World Scientific, 2007. ISBN 9789812706331.

Geuzaine C. y Remacle J.F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

Iman R.L., Helton J.C., y Campbell J.E. An approach to sensitivity analysis of computer models: Part i—introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology, 13(3):174–183, 1981. http://doi.org/10.1080/00224065.1981.11978748.

Li Y., Zhao Y., Chi Y., Hong Y., y Yin J. Shape-morphing materials and structures for energyefficient building envelopes. Materials Today Energy, 22:100874, 2021. ISSN 2468-6069. https://doi.org/10.1016/j.mtener.2021.100874.

Malinen M. y Råback P. Elmer finite element solver for multiphysics and multiscale problems, volumen 19, páginas 101–113. 2013. ISBN 978-3-89336-899-0.

Masto A., Trivaudey F., Guicheret V., Placet V., y Boubakar L. Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. Journal of Materials Science, 52(11):6591 – 6610, 2017.

McKay M.D., Beckman R.J., y Conover W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979. ISSN 00401706.

Mohammadzadehmoghadam S., Dong Y., y Davies I.J. Modeling electrospun nanofibers: An overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17):901–915, 2016. http://doi.org/10.1080/00914037.2016.1180617.

Montini Ballarin F., Caracciolo P., Blotta E., Ballarin V., y Abraham G. Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Materials Science and Engineering: C, 42:489–499, 2014. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2014.05.074.

Montini-Ballarin F., Suárez-Bagnasco D., Cymberknop L.J., Balay G., Caracciolo P.C., Negreira C., Armentano R.L., y Abraham G.A. Elasticity response of electrospun bioresorbable small-diameter vascular grafts: Towards a biomimetic mechanical response. Materials Letters, 209:175–177, 2017. ISSN 0167-577X. https://doi.org/10.1016/j.matlet.2017.07.110.

Pai C.L., Boyce M.C., y Rutledge G.C. On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer, 52(26):6126–6133, 2011. ISSN 0032-3861. https://doi.org/10.1016/j.polymer.2011.10.055.

Prosperi G., Paredes J., y Aldazabal J. Integration of correction factors for 3d printing errors in fem simulations for the precise mechanical analysis of single-layer auxetic scaffolds using a wavy pattern for tissue engineering. Bioprinting, 48:e00401, 2025. ISSN 2405-8866. https://doi.org/10.1016/j.bprint.2025.e00401.

Ragaert K., De Baere I., Degrieck J., y Cardon L. Bulk mechanical porperties of thermoplastic pcl. 2014.

Sobol’ I.M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967. http://doi.org/10.1016/0041-5553(67)90144-9.

van Kampen K.A., ten Brink T., Mota C., y Moroni L. Scaffolds with a tunable nonlinear elastic region using a corrugated design. Small Structures, 5(5):2300399, 2024. https://doi.org/10.1002/sstr.202300399.

Zhang Y., Wang X., Li K., Zhang Y., Yu X., Wang H., Wu X., Shi Z., Liu L., Zheng W., Cui Z., Xu Y., y Li Q. Nanofibrous tissue engineering scaffold with nonlinear elasticity created by controlled curvature and porosity. Journal of the Mechanical Behavior of Biomedical Materials, 126:105039, 2022. ISSN 1751-6161. https://doi.org/10.1016/j.jmbbm.2021.105039.

Published

2025-12-07