Análisis Mediante Modelado Computacional de la Influencia de la Técnica de Fabricación de Scaffolds Biomiméticos en los Resultados de Ensayos Uniaxiales
DOI:
https://doi.org/10.70567/mc.v42.ocsid8455Palavras-chave:
Modelado paramétrico automatizado, Matrices nanofibrosas biomiméticas, Método de los Elementos Finitos, Ensayos in-sílico, HiperelasticidadResumo
El presente trabajo se encuadra en el área de desarrollo de tejidos artificiales (scaffolds) para reemplazo de tejido vivo. Se analizan variaciones de la geometría respecto del diseño original a partir de probetas físicas de poly-caprolactona (PCL) obtenidas por mediante impresión 3D. Se realiza el modelado computacional de los ensayos uniaxiales utilizando las geometrías relevadas de probetas físicas y comparando con los resultados de geometrías ideales. Se presentan los resultados obtenidos analizando y discusión en relación con las variables estudiadas.
Referências
Arinstein A. Confinement mechanism of electrospun polymer nanofiber reinforcement. Journal of Polymer Science Part B: Polymer Physics, 51(9):756–763, 2013. https://doi.org/10.1002/polb.23246.
Baker S.R., Banerjee S., Bonin K., y Guthold M. Determining the mechanical properties of electrospun poly-e-caprolactone (pcl) nanofibers using afm and a novel fiber anchoring technique. Materials Science and Engineering: C, 59:203–212, 2016. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2015.09.102.
Caballero D.E., Montini-Ballarin F., Gimenez J.M., Biocca N., Rull N., Frontini P., y Urquiza S.A. Reduced kinematic multiscale model for tissue engineering electrospun scaffolds. Mechanics of Materials, 166:104214, 2022. ISSN 0167-6636. https://doi.org/10.1016/j.mechmat.2022.104214.
Carr G.E., Jáuregui N.M., Antonelli N., Ballarín F.M., y Urquiza S.A. Diseño in-sílico de scaffolds nanofibrosos biomiméticos 3d para ingeniería de tejidos: desarrollo de geometrías paramétricas, mallado y cálculo automatizado. Mecánica Computacional, XLI:903–911, 2024. ISSN 2591-3522. https://doi.org/10.70567/mc.v41i17.89.
Domaschke S., Morel A., Kaufmann R., Hofmann J., Rossi R.M., Mazza E., Fortunato G., y Ehret A.E. Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties. Journal of the Mechanical Behavior of Biomedical Materials, 104:103634, 2020. ISSN 1751-6161. https://doi.org/10.1016/j.jmbbm.2020.103634.
Fasshauer G. Meshfree Approximation Methods with MATLAB. Interdisciplinary mathematical sciences. World Scientific, 2007. ISBN 9789812706331.
Geuzaine C. y Remacle J.F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.
Iman R.L., Helton J.C., y Campbell J.E. An approach to sensitivity analysis of computer models: Part i—introduction, input variable selection and preliminary variable assessment. Journal of Quality Technology, 13(3):174–183, 1981. http://doi.org/10.1080/00224065.1981.11978748.
Li Y., Zhao Y., Chi Y., Hong Y., y Yin J. Shape-morphing materials and structures for energyefficient building envelopes. Materials Today Energy, 22:100874, 2021. ISSN 2468-6069. https://doi.org/10.1016/j.mtener.2021.100874.
Malinen M. y Råback P. Elmer finite element solver for multiphysics and multiscale problems, volumen 19, páginas 101–113. 2013. ISBN 978-3-89336-899-0.
Masto A., Trivaudey F., Guicheret V., Placet V., y Boubakar L. Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. Journal of Materials Science, 52(11):6591 – 6610, 2017.
McKay M.D., Beckman R.J., y Conover W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979. ISSN 00401706.
Mohammadzadehmoghadam S., Dong Y., y Davies I.J. Modeling electrospun nanofibers: An overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17):901–915, 2016. http://doi.org/10.1080/00914037.2016.1180617.
Montini Ballarin F., Caracciolo P., Blotta E., Ballarin V., y Abraham G. Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Materials Science and Engineering: C, 42:489–499, 2014. ISSN 0928-4931. https://doi.org/10.1016/j.msec.2014.05.074.
Montini-Ballarin F., Suárez-Bagnasco D., Cymberknop L.J., Balay G., Caracciolo P.C., Negreira C., Armentano R.L., y Abraham G.A. Elasticity response of electrospun bioresorbable small-diameter vascular grafts: Towards a biomimetic mechanical response. Materials Letters, 209:175–177, 2017. ISSN 0167-577X. https://doi.org/10.1016/j.matlet.2017.07.110.
Pai C.L., Boyce M.C., y Rutledge G.C. On the importance of fiber curvature to the elastic moduli of electrospun nonwoven fiber meshes. Polymer, 52(26):6126–6133, 2011. ISSN 0032-3861. https://doi.org/10.1016/j.polymer.2011.10.055.
Prosperi G., Paredes J., y Aldazabal J. Integration of correction factors for 3d printing errors in fem simulations for the precise mechanical analysis of single-layer auxetic scaffolds using a wavy pattern for tissue engineering. Bioprinting, 48:e00401, 2025. ISSN 2405-8866. https://doi.org/10.1016/j.bprint.2025.e00401.
Ragaert K., De Baere I., Degrieck J., y Cardon L. Bulk mechanical porperties of thermoplastic pcl. 2014.
Sobol’ I.M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967. http://doi.org/10.1016/0041-5553(67)90144-9.
van Kampen K.A., ten Brink T., Mota C., y Moroni L. Scaffolds with a tunable nonlinear elastic region using a corrugated design. Small Structures, 5(5):2300399, 2024. https://doi.org/10.1002/sstr.202300399.
Zhang Y., Wang X., Li K., Zhang Y., Yu X., Wang H., Wu X., Shi Z., Liu L., Zheng W., Cui Z., Xu Y., y Li Q. Nanofibrous tissue engineering scaffold with nonlinear elasticity created by controlled curvature and porosity. Journal of the Mechanical Behavior of Biomedical Materials, 126:105039, 2022. ISSN 1751-6161. https://doi.org/10.1016/j.jmbbm.2021.105039.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Associação Argentina de Mecânica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.

