Efficient Assignment of Routes for Milk Collection

Authors

  • Carlos A. Bonetti Universidad Tecnológica Nacional, Facultad Regional Rafaela, Laboratorio de Métodos y Simulaciones Computacionales. Rafaela, Argentina.
  • Gabriel D. Puccini Universidad Tecnológica Nacional, Facultad Regional Rafaela, Laboratorio de Métodos y Simulaciones Computacionales. Rafaela, Argentina.
  • Melina Denardi Universidad Tecnológica Nacional, Facultad Regional Rafaela, Laboratorio de Métodos y Simulaciones Computacionales. Rafaela, Argentina.
  • Jezabel D. Bianchotti Universidad Tecnológica Nacional, Facultad Regional Rafaela, Laboratorio de Métodos y Simulaciones Computacionales. Rafaela, Argentina.
  • Sergio E. Bertone Universidad Tecnológica Nacional, Facultad Regional Rafaela, Laboratorio de Métodos y Simulaciones Computacionales. Rafaela, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i16.81

Keywords:

Vehicle Routing, Simulated Annealing, Dairy Industry, Optimization

Abstract

In recent years, the use of computational tools and the availability of real-time information have improved the efficiency of various production processes. However, logistics in milk collection in the dairy sector is still manually planned. Optimizing the allocation of dairy farms to the trucks that collect the milk is a great opportunity to improve costs and the times involved. This paper proposes a methodology that allows taking real data from a specific area and determining an efficient route for each truck, with the aim of reducing the total distance traveled. The case study used is based on data collected from industries in the Pampas region, and the developed tool employs Simulated Annealing as an optimization technique. As a result of the implementation of this tool, a significant reduction in the total distance traveled is achieved.

References

Bonetti C., Puccini G., Bertone S., Bianchotti J., y Denardi M. Optimización de la logística en el transporte de leche mediante recocido simulado: un enfoque eficiente para la distribución láctea. Mecánica Computacional., 40:1087-1096, 2023.

Davies D.L. y Bouldin D.W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1:224-227, 1979.

https://doi.org/10.1109/TPAMI.1979.4766909

Kirkpatrick S., Gelatt J., y Vecchi M. Optimization by simulated annealing. Science., 220:671-680, 1983.

https://doi.org/10.1126/science.220.4598.671

López-Castro L., Solano-Charris E., y Pagés-Bernaus A. Environmental approach for the design of raw milk collection routes with a heterogeneous fleet. Computers and Electronics in Agriculture, 211:107995, 2023.

https://doi.org/10.1016/j.compag.2023.107995

Marinakis Y. y Migdalas A. Annotated bibliography in vehicle routing. Operational Research, 7:27-46, 2007.

https://doi.org/10.1007/BF02941184

Paredes-Belmar G., Marianov V., Bronfman A., Obreque C., y Lüer-Villagra A. A milk collection problem with blending. Transportation Research, 94:26-43, 2016.

https://doi.org/10.1016/j.tre.2016.07.006

Paredes-Belmar G., Montero E., y Leonardini O. A milk transportation problem with milk collection centers and vehicle routing. ISA Transactions, 122:294-311, 2022.

https://doi.org/10.1016/j.isatra.2021.04.020

Yeun L., Ismail W., Omar K., y Zirour M. Vehicle routing problem: Models and solutions. Journal of Quality Measurement and Analysis, 4:205-218, 2008.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024

Most read articles by the same author(s)