Boundary Layer Development and Transition in Airfoils and Flat Plates. A Comparative Study
DOI:
https://doi.org/10.70567/mc.v42.ocsid8340Palabras clave:
Laminar-turbulent transition, k–ω Models, Turbulent Flat plate, Airfoil (NACA0025)Resumen
Accurate prediction of the laminar-to-turbulent transition remains one of the most significant challenges in flow simulations using turbulence models. This work focuses on the analysis of currently available transition models and their main limitations, particularly in flat plate and airfoil configurations. Boundary layer transition strongly influences the distribution of skin friction coefficient on flat plates, as well as pressure and lift coefficients on airfoils, playing a key role in predicting drag, losses, and aerodynamic efficiency. Various modeling approaches are reviewed, including correlation-based methods and modified versions of the k–omega SST model tailored to capture transition mechanisms. Despite their progress, many of these models show limitations when dealing with non-ideal boundary conditions, adverse pressure gradients, or varying levels of incoming turbulence. This study presents a numerical evaluation of transition models applied to flat plate flows, comparing the resulting skin friction distributions with experimental correlations. The work is then extended to airfoil simulations, analyzing the behavior of pressure and lift coefficients and their sensitivity to transition location and flow separation. This allows for the visualization of boundary layer development and the impact of early or delayed transition on surface pressure distribution.The results indicate that while current models offer reasonable approximations under specific conditions, their generalization capability is still limited. It is concluded that further improvement is needed in the physical representation of transition mechanisms, along with more robust calibration under varied conditions, particularly for aerodynamic engineering applications.
Citas
Anderson J.D. Fundamentals of Aerodynamics. McGraw-Hill, 5th edition, 2010.
Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Druck von BG Teubner, 1907.
Cortes F.L. and Marquez Damián S. Evaluación de modelos turbulentos para la obtención del perfil energía cinética turbulenta. flujo en placa plana. Mecánica Computacional, 40(10):413–422, 2023.
Cortes F.L. and Marquez Damián S. Modificación del modelo k-omega sst para la obtención del perfil de energía cinética turbulenta: Flujo en placa plana. Mecánica Computacional, 41(6):333–341, 2024. https://doi.org/10.70567/mc.v41i6.33.
ERCOFTAC. Ercoftac classic database - flat plate t3 series. Technical Report, European Research Community on Flow, Turbulence and Combustion, 1995.
Fürst J. gammasst: A three-equation transition and turbulence model for OpenFOAM. https://github.com/furstj/gammaSST, 2023. Accedido: 2025-09-13. Basado en Menter et al. (2015).
Huang X., Li Y., and Wang Z. Revisiting rans prediction of transitional flow on t3a flat plate subject to various freestream turbulences. Computers & Fluids, 252:105745, 2023. https://doi.org/10.1016/j.compfluid.2023.105810.
Langtry R.B., Menter F., Likki S., Suzen Y., Huang P., and Vo¨ lker S. A correlationbased transition model using local variables: Part ii—test cases and industrial applications. In Turbo Expo: Power for Land, Sea, and Air, volume 41693, pages 69–79. 2004. https://doi.org//10.1115/GT2004-53454.
Menter F.R., Langtry R.B., Likki S., Suzen Y.B., Huang P., and Völker S. A correlation-based transition model using local variables—part i: model formulation. Journal of turbomachinery, 128(3):413–422, 2006. https://doi.org//10.1115/1.2184352.
Menter F.R., Smirnov P.E., Liu T., and Avancha R. A one-equation local correlationbased transition model. Flow, Turbulence and Combustion, 95(4):583–619, 2015. https://doi.org/10.1007/s10494-015-9622-4.
Pope S.B. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001. https://doi.org/10.1088/0957-0233/12/11/705.
Ryhming I. Testcase specifications. In D. Pironneau,W. Rode, and I. Ryhming, editors, Numerical Simulation of Unsteady Flows and Transition to Turbulence. ERCOFTAC, 1990. Part 1: Testcases T3A and T3B.
Schlichting H. and Gersten K. Boundary-layer theory. springer, 2016.
Spalding D. et al. A single formula for the law of the wall. Journal of Applied Mechanics, 28(3):455–458, 1961. https://doi.org/10.1115/1.3641728.
Wilcox D.C. The remarkable ability of turbulence model equations to describe transition. In California State Univ., The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows. 1992.
Ziadé P., Feero M.A., Lavoie P., and Sullivan P.E. Shear layer development, separation, and stability over a low-reynolds number airfoil. Journal of Fluids Engineering, 140(7):071201, 2018. https://doi.org/10.1115/1.4039233.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

