Investigating Precursors in Complex Systems: Insights from the Fiber Bundle Model and the 2017 México MW8.2 Earthquake
DOI:
https://doi.org/10.70567/mc.v42.ocsid8354Palabras clave:
b-value, Acoustic Emission, Earthquake precursors, Fiber Bundle Model, Lattice Discrete Element Method, Method of Critical FluctuationsResumen
Complex systems are characterized by self-organization, where interactions among constituent elements give rise to emergent patterns and critical transitions. In geophysics, earthquakes can be interpreted within this framework, where the analysis of precursor parameters provides critical insights into impending systemic instabilities. Among these, the temporal evolution of the b-value, derived from the Gutenberg-Richter frequency-magnitude scaling law, serves as a principal metric, with strong parallels drawn to Acoustic Emission (AE) studies in material failure. This work investigates critical-state precursors in two complementary case studies. The first employs AE time series generated from Fiber Bundle Model (FBM) simulations implemented via a Lattice Discrete Element Method (LDEM), enabling the characterization of progressive fracture and failure. The second examines the seismic sequence preceding the Mw 8.2 earthquake that struck Mexico in 2017. In both cases, the b- value and the Method of Critical Fluctuations (MCF-B) are applied to track the evolution of criticality. Results demonstrate that b-value variations consistently capture the transition to a critical regime, both in simulated and real seismic data. In contrast, MCF-B shows limited applicability in complex tectonic settings dominated by large, isolated events. These findings highlight the robustness of b-value analysis as a precursor, while also indicating the need for refining complementary approaches. The multiscale perspective adopted here contributes to advancing the identification of critical states in both acoustic and seismic domains, with implications for earthquake forecasting.
Citas
Carpinteri, A., Lacidogna, G., Puzzi, S., From criticality to final collapse: Evolution of the “bvalue” from 1.5 to 1.0. Chaos, Solitons, and Fractals, 41, 843—853, 2008. https://doi.org/10.1016/j.chaos.2008.04.010
Contoyiannis, Y.F., Diakonos, F.K., Criticality and intermittency in the order parameter space. Physics Letters A, 268, 286—292, 2000. https://doi.org/10.1016/S0375-9601(00)00180-8
Daniels, H. E., The statistical theory of the strength of bundles of threads, I. Proceedings of the Royal Society a Mathematical, Physical and Engineering sciences, 183, 405—435, 1945. https://doi.org/10.1098/rspa.1945.0011
Friedrich, L. F., Cezar, E. S., Colpo, A.B., Tanzi, B.N, Lacidogna, G., Iturrioz, I., Identifying impeding failure in heterogeneous materials: A study on acoustic emission time series. Chaos, Solitons & Fractals, 185, 2024 https://doi.org/10.1016/j.chaos.2024.115172
Friedrich, L. F., Padilha, M. H., Lacidogna, G., and Iturrioz, I., Multiscale investigation of seismic precursors before major earthquakes. Mechanics Research Communications, 147, 2025. https://doi.org/10.1016/j.mechrescom.2025.104449
Gutenberg, B., Richter, C.F., Seismicity of the earth and associated phenomena. Princeton University Press, 1949.
Hillerborg, A., A model for fracture analysis, Division of Building Materials LTH, Lund University. 3005, 1978.
Huang, M., Jiang, L., Liaw, P. K., Brooks, C. R., Seeley, R., and Klarstrom, D. L., Using Acoustic Emission in Fatigue and Fracture Materials Research. JOM: The Journal of the Minerals, 50, 1998.
Kosteski, L., Barrios D’Ambra, R., Iturrioz, I., Crack propagation in elastic solids using the truss-like discrete element method. International Journal of Fracture, 174, 139—161, 2012. https://doi.org/10.1007/s10704-012-9684-4
Kwapien, J., and Drozdz, S., Physical approach to complex systems. Physics Reports, 515, 115—226, 2012. https://doi.org/doi:10.1016/j.physrep.2012.01.007
Ladyman, J., Lambert, J., and Wiesner, K. What is a complex system? European Journal for Philophy of Science, 3:33–67, 2012. https://doi.org/10.1007/s13194-012-0056-8
Lei, X., Ma, S., Laboratory acoustic emission study for earthquake generation process. Earthquake Science, 27, 627—646, 2014. https://doi.org/10.1007/s11589-014-0103-y
Potirakis, S.M., Contoyiannis, Y., Schekotov, A., Eftaxias, K., and Hayakawa, M., Evidence of critical dynamics in various electromagnetic precursors. The Euroupean Physical Journal Special Topics, 230, 151—177, 2021. https://doi.org/10.1140/epjst/e2020-000249-x
Pradhan, S., Hansen, A., and Chakrabarti, B., Failure processes in elastic fiber bundles. Reviews of Modern Physics, 82, 499—555, 2010. https://doi.org/10.1103/RevModPhys.82.499
Pradhan, S., Hansen, A., Hemmer, Per., Crossover Behavior in Burst Avalanches: Signature of Imminent Failure. Phyisical Review Letters, 95, 2005. https://doi.org/10.1103/PhysRevLett.95.125501
Riera, J.D., Iturrioz, I., Discrete elements model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading. Nuclear Engineering and Design, 1791 135—144, 1998. https://doi.org/10.1016/S0029-5493(97)00270-7
Turcotte, D. L., and Malamud, B. D., Earthquakes as a Complex System. International Geophysics, 81A, 209—227, 2002. https://doi.org/10.1016/S0074-6142(02)80217-0
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

