A Strategy for the Obtention of the RPD And Probability Density of The Laminar Lengths in 2 Dimensional Systems

Authors

  • Juan Colman Universidad Nacional de Córdoba, FCEFyN, Departamento de Ing. Aeroespacial & Instituto de Estudios Avanzados en Ingeniería y Tecnología, CONICET-UNC. Córdoba, Argentina.
  • Sergio A. Elaskar Universidad Nacional de Córdoba, FCEFyN, Departamento de Ing. Aeroespacial & Instituto de Estudios Avanzados en Ingeniería y Tecnología, CONICET-UNC. Córdoba, Argentina.
  • Marcelo J. Frías Universidad Nacional de Córdoba, FCEFyN, Departamento de Ing. Aeroespacial. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8405

Abstract

Chaotic intermittency is a phenomenon observed in various branches of science, including engineering, physics, chemistry, economics, biology, and neuroscience. In fluid mechanics, particularly in turbulent flow, intermittency is a crucial characteristic. Recently, a new theory of chaotic intermittency has emerged, providing a better understanding of the phenomenon, and has been applied to one-dimensional maps. This work progresses with an effort to extend the new theory to two-dimensional maps. In this context, a two-dimensional return map exhibiting type-I intermittency is analyzed, particularly in its 10th and 14th iterations. The methodologies utilized to address intermittency with a significant number of fixed points are presented. The approach to deriving the characteristic functions that describe intermittency, including the reinjection probability density (RPD) function and the probability density of laminar lengths, is detailed. Additionally, numerical results are compared to those obtained from one-dimensional maps.

References

del Río E. y Elaskar S. New characteristic relation in type ii intermittency. Int. J. Bifurcation Chaos, 20:1185-1191, 2010. https://doi.org/10.1142/S0218127410026381

del Río E. y Elaskar S. On the intermittency theory. Int. J. Bifurcation Chaos, 26:1650228, 2016. https://doi.org/10.1142/S021812741650228X

del Río E. y Elaskar S. Experimental evidence of power law reinjection in chaotic intermittency. Commun. Nonlinear Sci. Numer. Simulat., 64:122-134, 2018. https://doi.org/10.1016/j.cnsns.2018.04.013

del Río E. y Elaskar S. Type iii intermittency without characteristic relation. Chaos., 31:043127, 2021. https://doi.org/10.1063/5.0040599

del Río E., Elaskar S., y Donoso J. Laminar length and characteristic relation in type i intermittency. Commun. Nonlinear Sci. Numer. Simulat., 19:967-976, 2014. https://doi.org/10.1016/j.cnsns.2013.08.012

del Río E. Sanjuán M. y Elaskar S. Effect of noise on the reinjection probability density in intermittency. Commun. Nonlinear Sci. Numer. Simulat., 17:3587-3596, 2012. https://doi.org/10.1016/j.cnsns.2012.01.020

del Río E. Elaskar S. y Makarov S. Theory of intermittency applied to classical pathological cases. Chaos., 19:967-976, 2013. https://doi.org/10.1063/1.4813857

Elaskar S. y del Río E. New Advances on Chaotic Intermittency and its Applications. Springer, 2017. https://doi.org/10.1007/978-3-319-47837-1

Elaskar S. y del Río E. Discontinuous reinjection probability density function in type v intermittency. J. Comp. Nonlinear Dynam., 13:121001, 2018. https://doi.org/10.1115/1.4041577

Elaskar S. y del Río E. Review of chaotic intermittency. Symmetry., 15:1195, 2023a. https://doi.org/10.3390/sym15061195

Elaskar S. y del Río E. Theoretical evaluation of the reinjection probability density function in chaotic intermittency. Symmetry., 15:1591, 2023b. https://doi.org/10.3390/sym15081591

Elaskar S., del Río E., y Costa A. Reinjection probability density for type iii intermittency with noise and lower boundary of reinjection. J. Comp. Nonlinear Dynam.,, 12:031020-11, 2017. https://doi.org/10.1115/1.4034732

Elaskar S., del Río E., y Donoso J. Reinjection probability density in type iii intermittency. Physica A., 390:2759-2768, 2011. https://doi.org/10.1016/j.physa.2011.03.016

Elaskar S., del Río E., y Gutierrez Marcantoni L. L. non-uniform reinjection probability density function in type v intermittency. Nonlinear Dynam,, 92:683-697, 2018. https://doi.org/10.1007/s11071-018-4083-7

Elaskar S., del Río E.and Krause G., y A. C. Effect of the lower boundary of reinjection and noise in type ii intermittency. Nonlinear Dynam., 79:1411-1424, 2015. https://doi.org/10.1007/s11071-014-1750-1

Kim C. y Kye W. Two-dimensional type-i intermittency. Physical Review E, 2001. https://doi.org/10.1103/PhysRevE.63.037202

Marek M. y Schreiber I. Chaotic behaviour of deterministic dissipative systems. Cambridge University Press,, 1995.

Nayfeh A. y Balachandran B. Applied nonlinear dynamics. Wiley, 1995. https://doi.org/10.1002/9783527617548

Pomeau Y. y Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74:189-197, 1980. https://doi.org/10.1007/BF01197757

Schuster H. y Just W. Deterministic chaos. Wiley VCH, 2005. https://doi.org/10.1002/3527604804

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025