Evaluation of Numerical Simulation Strategies Applied to Hydraulic Turbomachinery

Authors

  • Tomás Leschiutta Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.
  • Miguel Coussirat Universidad Tecnológica Nacional, Facultad Regional Mendoza, Laboratorio de Modelado Aeroplasticidad (LaMA). Mendoza, Argentina.
  • Flavio Moll Universidad Tecnológica Nacional, Facultad Regional Mendoza, Laboratorio de Modelado Aeroplasticidad (LaMA). Mendoza, Argentina.
  • Santiago Márquez Damián Centro de Investigación de Métodos Computacionales (CIMEC-CONICET/UNL) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8303

Keywords:

Hydraulic turbomachinery, Centrifugal pump, Fluid–structure interaction, CFD, OpenFOAM®

Abstract

The design of hydraulic turbomachines operating at the so-called design point has advanced to a stage where further improvements can only be achieved through a detailed understanding of the internal flow behavior. As an alternative to physical experimentation, numerical methods have become a powerful tool for predicting internal flow characteristics. However, these predictions involve several complex challenges, including the rotating reference frame, the three-dimensional geometry of the impeller, the unsteady and turbulent nature of the flow, and fluid–structure interactions, especially under off-design conditions, where strong interactions between the impeller and the stator or casing occur. These simulations are often computationally demanding due to the fine mesh resolution required and the inclusion of various sub-models, such as moving reference frames, turbulence modeling, and, in some cases, cavitation models when operating away from the design point. This work focuses on evaluating the interplay among different modeling strategies, particularly sub-models related to rotating frames and turbulence. Various combinations of these models are tested to achieve accurate predictions of the mean flow behavior in a radial pump, accounting for some of their important geometrical characteristics. Both open-source and commercial CFD solvers are employed. The simulation results are compared against a standard experimental dataset defined for benchmarking studies.

References

Arndt N., Acosta A.J., Brennen C.E., and Caughey T.K. Rotor–Stator Interaction in a Diffuser Pump. Journal of Turbomachinery, 1989. http://doi.org/10.1115/1.3262258.

Chia-Nan W., Fu-Chiang Y., Van Thanh Tien N., and Nhut T.V. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines, 2022.

Cortes F.L. and Damián S.M. Modificación del Modelo k-omega SST para la Obtención del Perfil de Energía Cinética Turbulenta: Flujo en Placa Plana. Mecánica Computacional, 41, 2024.

Coussirat M.G., Fontanals García A., Panella L., and Guardo Zabaleta A.d.J. Estudio del Fenómeno de Interacción Rotor Estator (RSI) en una Bomba Radial, Trabajando Fuera de las Condiciones de Diseño Óptimo. Asociación Argentina de Mecánica Computacional, 2014.

Coussirat M.G., Moll F.H., and Fontanals A. Capability of the Present Cavitating and Turbulence Models for Confined Flow Simulations. Mecánica Computacional, 34, 2016.

Dixon S.L. and Hall C. Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann, 2013.

Dring R.P., Joslyn H.D., Hardin L.W., and Wagner J.H. Turbine Rotor-Stator Interaction. Journal of Engineering for Power, 104(4):729–742, 1982. http://doi.org/10.1115/1.3227339.

Hamdamov M., Bozorov B., Mamataliyeva H., and Ergashov D. Numerical Modeling of Wind Turbine with Vertical Axis using Turbulence Model k- ? in Ansys Fluent. In E3S Web of Conferences, volume 401, page 02024. EDP Sciences, 2023.

Lai W.M., Rubin D., and Krempl E. Introduction to Continuum Mechanics (Fourth Edition), chapter 7. Butterworth-Heinemann, 2010.

Petit O. and Nilsson H. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser. International Journal of Rotating Machinery, 2013(1):961580, 2013.

Petit O., Page M., Beaudoin M., and Nilsson H. The ERCOFTAC Centrifugal Pump Open-FOAM Case-Study. In Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problem in Hydraulic Machinery and Systems, Brno, Czech Republic, pages 14–16. 2009.

Reti L. Francesco di Giorgio Martini’s Treatise on Engineering and its Plagiarists. Technology and Culture, 4(3):287–298, 1963.

Ubaldi M., Zunino P., Barigozzi G., and Cattanei A. An Experimental Investigation of Stator Induced Unsteadiness on Centrifugal Impeller Outflow. Journal of Turbomachinery, 118, 1996. http://doi.org/10.1115/1.2836604.

Ubaldi M., Zunino P., and Ghiglione A. Detailed Flow Measurements within the Impeller and the Vaneless Diffuser of a Centrifugal Turbomachine. Experimental Thermal and Fluid Science, 17, 1998.

Zhou D., Zhang N., Zheng F., Gad M., and Gao B.G. Experimental Investigation on the Effect of the Rotor-Stator Matching Mode on Velocity Pulsation in the Centrifugal Pump with a Vaned Diffuser. Nuclear Engineering and Technology, 57(3):103255, 2025.

Downloads

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025

Most read articles by the same author(s)