Determination of Characteristic Parameter of an Ablative Pulsed Plasma Thruster Using Probabilistic Techniques

Authors

  • Matías A. Agüero Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Walter B. Castelló Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Estructuras. Córdoba, Argentina.
  • Sergio A. Elaskar Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Ing. Aeroespacial & Instituto de Estudios Avanzados (IDIT), CONICET - Universidad Nacional de Córdoba. Córdoba, Argentina.
  • Gianni Pellegrini Freelancer Space Professional. Florence, Italy.
  • Manuel Saravia University of Pisa, Department of Civil and Industrial Engineering. Pisa, Italy.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8444

Keywords:

Electric propulsion, plasma, pulsed plasma thruster, Ultranest

Abstract

The complexity of the physical phenomena involved in plasma generation and acceleration makes it difficult to implement high-fidelity predictive models. Bayesian statistics offers a powerful framework for data interpretation, based on experimental data and available prior knowledge. This paper presents the results obtained with a numerical tool based on statistics, which is applied to the study of plasma evolving in the acceleration chamber of a variable-section ablative pulsed plasma thruster.

References

Agüero, M. y otros, 2025. Análisis bayesiano aplicado a la determinación de parámetros físicos en propulsores de plasma pulsante. XIII Congreso Argentino de Tecnología Espacial.

Bittencourt, J. A., 2013. Fundamentals of plasma physics.. s.l.:Springer Science & Business Media.. https://doi.org/10.1007/978-1-4757-4030-1

Buchner, J., 2021.. UltraNest--a robust, general purpose Bayesian inference engine, arXiv preprint arXiv:2101.09604,. [En línea]. https://doi.org/10.21105/joss.03001

Jahn, R. G., 1968. Physics of Electric Propulsion. New York: McGraw-Hill Book Co..

Laperriere, D., 2005. Electromechanical modeling and open-loop control of parallel-plate. s.l.:Worcester Polytechnic Institute.

Mancini, E., 2017. On the analysis of Pulsed Plasma Thruster performance and plume characterization. Tesi di Laurea. Pisa, Italia: s.n.

Pellegrini, G., 2012. Solid Propellant Pulsed Plasma Thrusters. Pisa: s.n.

Saravia, M., Giacobbe, A. & Andreussi, T., 2019. Bayesian analysis of triple Langmuir probe measurements for the characterization of Hall thruster plasmas. Review of Scientific Instruments, 20(2). https://doi.org/10.1063/1.5079532

Schönherr, T., Nawaz, A., Herdrich, G. & Röser, H., 2009. Influence of electrode shape on performance of pulsed magnetoplasmadynamic thruster SIMP-LEX. Journal of propulsion and power. Journal of Propulsion and Power., 25(2), pp. 380-386. https://doi.org/10.2514/1.35568

Sivia, S., 2006. Data analysis. A bayesian tutorial.. Rutherford Appleton Laboratory and St. Catherine’s College, Oxford: s.n. https://doi.org/10.1093/oso/9780198568315.002.0001

Spitzer, L., 1956. Physics of fully ionized gases.. s.l.:Interscience Publishers.

Yang, L., Liu, X. Y., Wang, N. F. & Wu, Z. W., 2011. Analysis of teflon pulsed plasma thrusters using a modified slug parallel plate model. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 6077. https://doi.org/10.2514/6.2011-6077

Published

2025-12-03

Issue

Section

Conference Papers in MECOM 2025