Extending the VPSC–CODE_ASTER Framework: Thermal Creep and Thermal Expansion in the Multiscale Analysis of Irradiated Zircaloy Cladding
DOI:
https://doi.org/10.70567/mc.v42.ocsid8623Keywords:
Anisotropic behaviour, Irradiation creep, Thermal creep, Thermal expansion, Polycrystalline material, Finite element analysis, Code_Aster, VPSCAbstract
We present an extension of the multiscale VPSC–Code_Aster framework applied to Zircaloy-2 cladding. Two key thermal mechanisms are incorporated: thermal creep and thermal expansion, formulated at the crystal level and integrated into the self-consistent scheme. The polycrystal model is then coupled with Code_Aster through the CAFEM interface, enabling multiscale analysis with user-defined material laws. Preliminary results indicate that thermal creep is strongly stress-state sensitive and, within the explored range, its influence on accumulated plastic strain is more pronounced than that of moderate temperature changes. In contrast, thermal expansion is strictly temperature-driven and enters the constitutive model as a stress-free strain. This advancement moves toward more comprehensive predictive frameworks for the anisotropic behaviour of zirconium alloys under service conditions.
References
Adamson R., Garzarolli F., y Patterson C. In-reactor creep of zirconium alloys. Advanced Nuclear Technology International, 2009.
Adamson R.B., Coleman C.E., y Griffiths M. Irradiation creep and growth of zirconium alloys: A critical review. Journal of Nuclear Materials, 521:167–244, 2019.
Aguzzi F., Rabazzi S.M., Armoa M., Pairetti C., y Albanesi A.E. An open-source finite element toolbox for anisotropic creep and irradiation growth: Application to cladding tube and spacer grid. Nuclear Engineering and Design, 2025. Under review.
Aguzzi F. y Signorelli J.W. Integración del modelo visco-plástico autoconsistente con leyes bajo irradiación de creep y crecimiento en el código de elementos finitos code aster. En XL Congreso Argentino de Mecánica Computacional. 2024.
Butcher F. y Donohue S. In-reactor deformation of cold-drawn tubes of zr-2.5 wt% nb. Internal report CNRL-4022, CNRL, 1986.
Christodoulou N., Chow C., Turner P., Tomé C., y Klassen R. Analysis of steady-state thermal creep of zr-2.5 nb pressure tube material. Metallurgical and Materials Transactions A, 33:1103–1115, 2002.
Fidleris V. The irradiation creep and growth phenomena. Journal of Nuclear Materials, 159:22– 42, 1988.
Franklin D.G., Lucas G.E., y Bement A.L. Creep of zirconium alloys in nuclear reactors. 815. ASTM International, 1983.
Goldak J., Lloyd L., y Barrett C. Lattice parameters, thermal expansions, and grüneisen coefficients of zirconium, 4.2 to 1130 k. Physical Review, 144(2):478, 1966.
Hayes T.A. y Kassner M.E. Creep of zirconium and zirconium alloys. Metallurgical and Materials Transactions A, 37:2389–2396, 2006.
Kocks U.F., Tomé C.N., y Wenk H.R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 2000.
Lebensohn R.A. y Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta metallurgica et materialia, 41(9):2611–2624, 1993.
McGinty R.D. Multiscale representation of polycrystalline inelasticity. Georgia institute of technology, 2001.
Molinari A., Canova G., y Ahzi S. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12):2983–2994, 1987.
Onimus F., Doriot S., y Béchade J.L. Radiation effects in zirconium alloys. Comprehensive nuclear materials, 3:1–56, 2020.
Onimus F., Gelebart L., y Brenner R. Polycrystalline simulations using fast fourier transform method of in-reactor deformation of recrystallized zircaloy-4 tubes. En Numat2022-The Nuclear Materials Conference. 2022.
Patra A. y Tomé C.N. Finite element simulation of gap opening between cladding tube and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nuclear Engineering and Design, 315:155–169, 2017.
Patra A., Tomé C.N., y Golubov S.I. Crystal plasticity modeling of irradiation growth in zircaloy-2. Philosophical Magazine, 97(23):2018–2051, 2017.
Segurado J., Lebensohn R.A., LLorca J., y Tomé C.N. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. International Journal of Plasticity, 28(1):124–140, 2012.
Simmons G. Single crystal elastic constants and calculated aggregate properties. Journal of the Graduate Research Center, 34(1):1, 1965.
Sleight A.W. Isotropic negative thermal expansion. Annual review of materials science, 28(1):29–43, 1998.
Tomé C., So C., yWoo C. Self-consistent calculation of steady-state creep and growth in textured zirconium. Philosophical magazine A, 67(4):917–930, 1993.
Tomé C.N. y Lebensohn R.A. Material modeling with the visco-plastic self-consistent (VPSC) approach: theory and practical applications. Elsevier, 2023.
Wang H., Hu Z., Lu W., y Thouless M. A mechanism-based framework for the numerical analysis of creep in zircaloy-4. Journal of Nuclear Materials, 433(1-3):188–198, 2013.
Xiao X., Xie H., Li S., y Yu L. Modelling thermal and irradiation creep with crystal plasticity theory and self-consistent method. Journal of Nuclear Materials, 587:154702, 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

