Extending the VPSC–CODE_ASTER Framework: Thermal Creep and Thermal Expansion in the Multiscale Analysis of Irradiated Zircaloy Cladding

Authors

  • Fabrizio E. Aguzzi Llubel Instituto de Física de Rosario (IFIR), CONICET-UNR. Rosario, Argentina. https://orcid.org/0009-0003-3179-611X
  • Santiago M. Rabazzi Instituto de Física de Rosario (IFIR), CONICET-UNR. Rosario, Argentina.
  • Martín S. Armoa Instituto de Física de Rosario (IFIR), CONICET-UNR. Rosario, Argentina.
  • César I. Pairetti Instituto de Física de Rosario (IFIR), CONICET-UNR. Rosario, Argentina.
  • Alejandro E. Albanesi Centro de Investigación de Métodos Computacionales (CIMEC), CONICET-UNL. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8623

Keywords:

Anisotropic behaviour, Irradiation creep, Thermal creep, Thermal expansion, Polycrystalline material, Finite element analysis, Code_Aster, VPSC

Abstract

We present an extension of the multiscale VPSC–Code_Aster framework applied to Zircaloy-2 cladding. Two key thermal mechanisms are incorporated: thermal creep and thermal expansion, formulated at the crystal level and integrated into the self-consistent scheme. The polycrystal model is then coupled with Code_Aster through the CAFEM interface, enabling multiscale analysis with user-defined material laws. Preliminary results indicate that thermal creep is strongly stress-state sensitive and, within the explored range, its influence on accumulated plastic strain is more pronounced than that of moderate temperature changes. In contrast, thermal expansion is strictly temperature-driven and enters the constitutive model as a stress-free strain. This advancement moves toward more comprehensive predictive frameworks for the anisotropic behaviour of zirconium alloys under service conditions.

References

Adamson R., Garzarolli F., y Patterson C. In-reactor creep of zirconium alloys. Advanced Nuclear Technology International, 2009.

Adamson R.B., Coleman C.E., y Griffiths M. Irradiation creep and growth of zirconium alloys: A critical review. Journal of Nuclear Materials, 521:167–244, 2019.

Aguzzi F., Rabazzi S.M., Armoa M., Pairetti C., y Albanesi A.E. An open-source finite element toolbox for anisotropic creep and irradiation growth: Application to cladding tube and spacer grid. Nuclear Engineering and Design, 2025. Under review.

Aguzzi F. y Signorelli J.W. Integración del modelo visco-plástico autoconsistente con leyes bajo irradiación de creep y crecimiento en el código de elementos finitos code aster. En XL Congreso Argentino de Mecánica Computacional. 2024.

Butcher F. y Donohue S. In-reactor deformation of cold-drawn tubes of zr-2.5 wt% nb. Internal report CNRL-4022, CNRL, 1986.

Christodoulou N., Chow C., Turner P., Tomé C., y Klassen R. Analysis of steady-state thermal creep of zr-2.5 nb pressure tube material. Metallurgical and Materials Transactions A, 33:1103–1115, 2002.

Fidleris V. The irradiation creep and growth phenomena. Journal of Nuclear Materials, 159:22– 42, 1988.

Franklin D.G., Lucas G.E., y Bement A.L. Creep of zirconium alloys in nuclear reactors. 815. ASTM International, 1983.

Goldak J., Lloyd L., y Barrett C. Lattice parameters, thermal expansions, and grüneisen coefficients of zirconium, 4.2 to 1130 k. Physical Review, 144(2):478, 1966.

Hayes T.A. y Kassner M.E. Creep of zirconium and zirconium alloys. Metallurgical and Materials Transactions A, 37:2389–2396, 2006.

Kocks U.F., Tomé C.N., y Wenk H.R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 2000.

Lebensohn R.A. y Tomé C. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta metallurgica et materialia, 41(9):2611–2624, 1993.

McGinty R.D. Multiscale representation of polycrystalline inelasticity. Georgia institute of technology, 2001.

Molinari A., Canova G., y Ahzi S. A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica, 35(12):2983–2994, 1987.

Onimus F., Doriot S., y Béchade J.L. Radiation effects in zirconium alloys. Comprehensive nuclear materials, 3:1–56, 2020.

Onimus F., Gelebart L., y Brenner R. Polycrystalline simulations using fast fourier transform method of in-reactor deformation of recrystallized zircaloy-4 tubes. En Numat2022-The Nuclear Materials Conference. 2022.

Patra A. y Tomé C.N. Finite element simulation of gap opening between cladding tube and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nuclear Engineering and Design, 315:155–169, 2017.

Patra A., Tomé C.N., y Golubov S.I. Crystal plasticity modeling of irradiation growth in zircaloy-2. Philosophical Magazine, 97(23):2018–2051, 2017.

Segurado J., Lebensohn R.A., LLorca J., y Tomé C.N. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. International Journal of Plasticity, 28(1):124–140, 2012.

Simmons G. Single crystal elastic constants and calculated aggregate properties. Journal of the Graduate Research Center, 34(1):1, 1965.

Sleight A.W. Isotropic negative thermal expansion. Annual review of materials science, 28(1):29–43, 1998.

Tomé C., So C., yWoo C. Self-consistent calculation of steady-state creep and growth in textured zirconium. Philosophical magazine A, 67(4):917–930, 1993.

Tomé C.N. y Lebensohn R.A. Material modeling with the visco-plastic self-consistent (VPSC) approach: theory and practical applications. Elsevier, 2023.

Wang H., Hu Z., Lu W., y Thouless M. A mechanism-based framework for the numerical analysis of creep in zircaloy-4. Journal of Nuclear Materials, 433(1-3):188–198, 2013.

Xiao X., Xie H., Li S., y Yu L. Modelling thermal and irradiation creep with crystal plasticity theory and self-consistent method. Journal of Nuclear Materials, 587:154702, 2023.

Published

2025-12-05

Issue

Section

Conference Papers in MECOM 2025

Most read articles by the same author(s)