Validation of the rhoCentralFoam Solver for Predicting Loads on Fuel Storage Tanks from Explosions
DOI:
https://doi.org/10.70567/mc.v42.ocsid8336Keywords:
blast wave, explosion, OpenFOAM, storage tankAbstract
This study validates the use of the Kurganov-Noelle-Petrova (KNP) numerical scheme in OpenFOAM’s rhoCentralFoam solver for simulating blast waves and their interaction with fuel storage tanks. The model uses a simplified approach based on the instantaneous release of energy from spherical or cylindrical geometries, ignoring chemical reactions and modeling only air. This simplification offers major computational advantages by reducing numerical complexity while maintaining accuracy in key shock wave parameters. Validation was performed by comparing results against analytical solutions (Sedov theory), empirical guidelines, and experimental data. The results show the scheme accurately captures overpressures (error <10 %), arrival times (error <5 %), and complex phenomena like Mach reflections. The study confirms the KNP method is a robust and reliable tool for risk analysis and safety evaluations in industrial facilities, highlighting the crucial importance of three-dimensional effects for improving protection standards.
References
Baker W.E., Cox P., Kulesz J., Strehlow R., y Westine P. Explosion hazards and evaluation. Elsevier, 2012.
Ben-Dor G. Shock wave reflection phenomena, volumen 2. Springer, 2007.
Duong D.H., Hanus J.L., Bouazaoui L., Pennetier O., Moriceau J., Prod'homme G., y Reimeringer M. Response of a tank under blast loading-part i: experimental characterisation of blast loading arising from a gas explosion. European Journal of Environmental and Civil Engineering, 16(9):1023-1041, 2012. https//doi.org/10.1080/19648189.2012.699741
Ferziger J., Peri'c M., y Street R. Computational Methods for Fluid Dynamics. Springer International Publishing, 2019. ISBN 9783319996912. https//doi.org/10.1007/978-3-319-99693-6
Godoy L.A., Elaskar S.A., Francisca F.M., Montoro M.A., Jaca R.C., Espinosa S.N., y Ameijeiras M.P. Efectos de desastres naturales y accidentes sobre infraestructura y medio físico en sistemas de almacenamiento y transporte de petróleo. Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 6(2):21-34, 2019.
Greenshields C.J., Weller H.G., Gasparini L., y Reese J.M. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for highspeed viscous flows. International journal for numerical methods in fluids, 63(1):1-21, 2010. https//doi.org/10.1002/fld.2069
Gutiérrez Marcantoni L.F., Elaskar S., Tamagno J., Saldía J., y Krause G. An assessment of the openfoam implementation of the knp scheme to simulate strong explosions. Shock Waves, 31(2):193-202, 2021. https//doi.org/10.1007/s00193-021-01008-8
Jasak H. Openfoam: Open source cfd in research and industry. International journal of naval architecture and ocean engineering, 1(2):89-94, 2009. https//doi.org/10.2478/IJNAOE-2013-0011
Karlos V. y Solomos G. Calculation of blast loads for application to structural components. Luxembourg: Publications Office of the European Union, 5, 2013.
Kletz T. y Amyotte P. What Went Wrong?: Case Histories of Process Plant Disasters and How They Could Have Been Avoided. Butterworth-Heinemann, 2019. ISBN 9780128105405.
Monaldi L., Elaskar S.A., y Marcantoni L.F.G. Efecto de la viscosidad en la reflexión de ondas de choques cilíndricas sobre paredes planas empleando openfoam. Mecánica Computacional, 40(10):443-452, 2023.
Monaldi L., Gutierrez Marcantoni F., y Elaskar S. Parametric study of explosion height effects on blast loading characteristics for cylindrical storage tanks using cfd. Process Safety and Environmental Protection, (in press), 2025. https//doi.org/10.1016/j.psep.2025.107782
Monaldi L., Gutiérrez Marcantoni L.F., y Elaskar S. Openfoamtm simulation of the shock wave reflection in unsteady flow. Symmetry, 14(10):2048, 2022. https//doi.org/10.3390/sym14102048
Roh T., Lee Y., Lee W., y Yoh J. Understanding the effects of blast loads on open spaces and enclosed structures in simulations and experiments. Shock Waves, 30(7):843-854, 2020. https//doi.org/10.1007/s00193-020-00956-x
Sedov L. Similarity and Dimensional Methods in Mechanics. CRC Press, 2018. ISBN 9781351416566. https//doi.org/10.1201/9780203739730
Tamagno J., Elaskar S., Gutiérrez Marcantoni L.F., Saldía J.P., y Bruel P. Un análisis aproximado de la burbuja explosiva generada por liberación instantánea de energía. En 2020 IEEE Congreso Bienal de Argentina (ARGENCON), páginas 1-7. IEEE, 2020. https//doi.org/10.1109/ARGENCON49523.2020.9505444
Taveau J. Explosion of fixed roof atmospheric storage tanks, part 1: Background and review of case histories. Process Safety Progress, 30(4):381-392, 2011. https//doi.org/10.1002/prs.10459
UFC-340-02. Unified facilities criteria (ufc-340-02), structures to resist the effects of accidental explosions. Department of Defense, United State of America, 2008.
Whitham G. Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2011. ISBN 9781118031209.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.

