Validation of the rhoCentralFoam Solver for Predicting Loads on Fuel Storage Tanks from Explosions

Authors

  • Lucas Monaldi CONICET- Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ciencia e Ingeniería & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina. https://orcid.org/0000-0001-8742-4073
  • Luis Felipe Gutierrez Marcantoni Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina.
  • Sergio A. Elaskar CONICET- Universidad Nacional de Córdoba, Instituto de Estudios Avanzados en Ciencia e Ingeniería & Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8336

Keywords:

blast wave, explosion, OpenFOAM, storage tank

Abstract

This study validates the use of the Kurganov-Noelle-Petrova (KNP) numerical scheme in OpenFOAM’s rhoCentralFoam solver for simulating blast waves and their interaction with fuel storage tanks. The model uses a simplified approach based on the instantaneous release of energy from spherical or cylindrical geometries, ignoring chemical reactions and modeling only air. This simplification offers major computational advantages by reducing numerical complexity while maintaining accuracy in key shock wave parameters. Validation was performed by comparing results against analytical solutions (Sedov theory), empirical guidelines, and experimental data. The results show the scheme accurately captures overpressures (error <10 %), arrival times (error <5 %), and complex phenomena like Mach reflections. The study confirms the KNP method is a robust and reliable tool for risk analysis and safety evaluations in industrial facilities, highlighting the crucial importance of three-dimensional effects for improving protection standards.

References

Baker W.E., Cox P., Kulesz J., Strehlow R., y Westine P. Explosion hazards and evaluation. Elsevier, 2012.

Ben-Dor G. Shock wave reflection phenomena, volumen 2. Springer, 2007.

Duong D.H., Hanus J.L., Bouazaoui L., Pennetier O., Moriceau J., Prod'homme G., y Reimeringer M. Response of a tank under blast loading-part i: experimental characterisation of blast loading arising from a gas explosion. European Journal of Environmental and Civil Engineering, 16(9):1023-1041, 2012. https//doi.org/10.1080/19648189.2012.699741

Ferziger J., Peri'c M., y Street R. Computational Methods for Fluid Dynamics. Springer International Publishing, 2019. ISBN 9783319996912. https//doi.org/10.1007/978-3-319-99693-6

Godoy L.A., Elaskar S.A., Francisca F.M., Montoro M.A., Jaca R.C., Espinosa S.N., y Ameijeiras M.P. Efectos de desastres naturales y accidentes sobre infraestructura y medio físico en sistemas de almacenamiento y transporte de petróleo. Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 6(2):21-34, 2019.

Greenshields C.J., Weller H.G., Gasparini L., y Reese J.M. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for highspeed viscous flows. International journal for numerical methods in fluids, 63(1):1-21, 2010. https//doi.org/10.1002/fld.2069

Gutiérrez Marcantoni L.F., Elaskar S., Tamagno J., Saldía J., y Krause G. An assessment of the openfoam implementation of the knp scheme to simulate strong explosions. Shock Waves, 31(2):193-202, 2021. https//doi.org/10.1007/s00193-021-01008-8

Jasak H. Openfoam: Open source cfd in research and industry. International journal of naval architecture and ocean engineering, 1(2):89-94, 2009. https//doi.org/10.2478/IJNAOE-2013-0011

Karlos V. y Solomos G. Calculation of blast loads for application to structural components. Luxembourg: Publications Office of the European Union, 5, 2013.

Kletz T. y Amyotte P. What Went Wrong?: Case Histories of Process Plant Disasters and How They Could Have Been Avoided. Butterworth-Heinemann, 2019. ISBN 9780128105405.

Monaldi L., Elaskar S.A., y Marcantoni L.F.G. Efecto de la viscosidad en la reflexión de ondas de choques cilíndricas sobre paredes planas empleando openfoam. Mecánica Computacional, 40(10):443-452, 2023.

Monaldi L., Gutierrez Marcantoni F., y Elaskar S. Parametric study of explosion height effects on blast loading characteristics for cylindrical storage tanks using cfd. Process Safety and Environmental Protection, (in press), 2025. https//doi.org/10.1016/j.psep.2025.107782

Monaldi L., Gutiérrez Marcantoni L.F., y Elaskar S. Openfoamtm simulation of the shock wave reflection in unsteady flow. Symmetry, 14(10):2048, 2022. https//doi.org/10.3390/sym14102048

Roh T., Lee Y., Lee W., y Yoh J. Understanding the effects of blast loads on open spaces and enclosed structures in simulations and experiments. Shock Waves, 30(7):843-854, 2020. https//doi.org/10.1007/s00193-020-00956-x

Sedov L. Similarity and Dimensional Methods in Mechanics. CRC Press, 2018. ISBN 9781351416566. https//doi.org/10.1201/9780203739730

Tamagno J., Elaskar S., Gutiérrez Marcantoni L.F., Saldía J.P., y Bruel P. Un análisis aproximado de la burbuja explosiva generada por liberación instantánea de energía. En 2020 IEEE Congreso Bienal de Argentina (ARGENCON), páginas 1-7. IEEE, 2020. https//doi.org/10.1109/ARGENCON49523.2020.9505444

Taveau J. Explosion of fixed roof atmospheric storage tanks, part 1: Background and review of case histories. Process Safety Progress, 30(4):381-392, 2011. https//doi.org/10.1002/prs.10459

UFC-340-02. Unified facilities criteria (ufc-340-02), structures to resist the effects of accidental explosions. Department of Defense, United State of America, 2008.

Whitham G. Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2011. ISBN 9781118031209.

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025